CLMASP: Coupling Large Language Models with Answer Set Programming for Robotic Task Planning
- URL: http://arxiv.org/abs/2406.03367v1
- Date: Wed, 5 Jun 2024 15:21:44 GMT
- Title: CLMASP: Coupling Large Language Models with Answer Set Programming for Robotic Task Planning
- Authors: Xinrui Lin, Yangfan Wu, Huanyu Yang, Yu Zhang, Yanyong Zhang, Jianmin Ji,
- Abstract summary: Large Language Models (LLMs) possess extensive foundational knowledge and moderate reasoning abilities.
It is challenging to ground a LLM-generated plan to be executable for the specified robot with certain restrictions.
This paper introduces CLMASP, an approach that couples LLMs with Answer Set Programming (ASP) to overcome the limitations.
- Score: 9.544073786800706
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) possess extensive foundational knowledge and moderate reasoning abilities, making them suitable for general task planning in open-world scenarios. However, it is challenging to ground a LLM-generated plan to be executable for the specified robot with certain restrictions. This paper introduces CLMASP, an approach that couples LLMs with Answer Set Programming (ASP) to overcome the limitations, where ASP is a non-monotonic logic programming formalism renowned for its capacity to represent and reason about a robot's action knowledge. CLMASP initiates with a LLM generating a basic skeleton plan, which is subsequently tailored to the specific scenario using a vector database. This plan is then refined by an ASP program with a robot's action knowledge, which integrates implementation details into the skeleton, grounding the LLM's abstract outputs in practical robot contexts. Our experiments conducted on the VirtualHome platform demonstrate CLMASP's efficacy. Compared to the baseline executable rate of under 2% with LLM approaches, CLMASP significantly improves this to over 90%.
Related papers
- In-Context Learning Enables Robot Action Prediction in LLMs [52.285739178561705]
We introduce RoboPrompt, a framework that enables offthe-shelf text-only Large Language Models to directly predict robot actions.
Our approach firstally identifiess that capture important moments from an episode.
We extract end-effector actions as well as the estimated initial object poses, and both are converted into textual descriptions.
This enables an LLM to directly predict robot actions at test time.
arXiv Detail & Related papers (2024-10-16T17:56:49Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information.
This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning.
arXiv Detail & Related papers (2024-08-15T14:46:13Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Empowering Large Language Models on Robotic Manipulation with Affordance Prompting [23.318449345424725]
Large language models fail to interact with the physical world by generating control sequences properly.
Existing LLM-based approaches circumvent this problem by relying on additional pre-defined skills or pre-trained sub-policies.
We propose a framework called LLM+A(ffordance) where the LLM serves as both the sub-task planner and the motion controller.
arXiv Detail & Related papers (2024-04-17T03:06:32Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - Interactively Robot Action Planning with Uncertainty Analysis and Active
Questioning by Large Language Model [6.695536752781623]
The Large Language Model (LLM) to robot action planning has been actively studied.
The instructions given to the LLM by natural language may include ambiguity and lack of information depending on the task context.
We propose an interactive robot action planning method that allows the LLM to analyze and gather missing information by asking questions to humans.
arXiv Detail & Related papers (2023-08-30T00:54:44Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Act is a framework that maps multi-modal instructions to sequential actions for robotic manipulation tasks.
Our approach is adjustable and flexible in accommodating various instruction modalities and input types.
Our zero-shot method outperformed many state-of-the-art learning-based policies in several tasks.
arXiv Detail & Related papers (2023-05-18T17:59:49Z) - Plansformer: Generating Symbolic Plans using Transformers [24.375997526106246]
Large Language Models (LLMs) have been the subject of active research, significantly advancing the field of Natural Language Processing (NLP)
We introduce Plansformer; an LLM fine-tuned on planning problems and capable of generating plans with favorable behavior in terms of correctness and length with reduced knowledge-engineering efforts.
For one configuration of Plansformer, we achieve 97% valid plans, out of which 95% are optimal for Towers of Hanoi - a puzzle-solving domain.
arXiv Detail & Related papers (2022-12-16T19:06:49Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z) - Neuro-Symbolic Causal Language Planning with Commonsense Prompting [67.06667162430118]
Language planning aims to implement complex high-level goals by decomposition into simpler low-level steps.
Previous methods require either manual exemplars or annotated programs to acquire such ability from large language models.
This paper proposes Neuro-Symbolic Causal Language Planner (CLAP) that elicits procedural knowledge from the LLMs with commonsense-infused prompting.
arXiv Detail & Related papers (2022-06-06T22:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.