Learning to Reason and Navigate: Parameter Efficient Action Planning with Large Language Models
- URL: http://arxiv.org/abs/2505.07500v1
- Date: Mon, 12 May 2025 12:38:20 GMT
- Title: Learning to Reason and Navigate: Parameter Efficient Action Planning with Large Language Models
- Authors: Bahram Mohammadi, Ehsan Abbasnejad, Yuankai Qi, Qi Wu, Anton Van Den Hengel, Javen Qinfeng Shi,
- Abstract summary: This paper proposes a novel parameter-efficient action planner using large language models (PEAP-LLM) to generate a single-step instruction at each location.<n>Experiments show the superiority of our proposed model on REVERIE compared to the previous state-of-the-art.
- Score: 63.765846080050906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remote embodied referring expression (REVERIE) task requires an agent to navigate through complex indoor environments and localize a remote object specified by high-level instructions, such as "bring me a spoon", without pre-exploration. Hence, an efficient navigation plan is essential for the final success. This paper proposes a novel parameter-efficient action planner using large language models (PEAP-LLM) to generate a single-step instruction at each location. The proposed model consists of two modules, LLM goal planner (LGP) and LoRA action planner (LAP). Initially, LGP extracts the goal-oriented plan from REVERIE instructions, including the target object and room. Then, LAP generates a single-step instruction with the goal-oriented plan, high-level instruction, and current visual observation as input. PEAP-LLM enables the embodied agent to interact with LAP as the path planner on the fly. A simple direct application of LLMs hardly achieves good performance. Also, existing hard-prompt-based methods are error-prone in complicated scenarios and need human intervention. To address these issues and prevent the LLM from generating hallucinations and biased information, we propose a novel two-stage method for fine-tuning the LLM, consisting of supervised fine-tuning (STF) and direct preference optimization (DPO). SFT improves the quality of generated instructions, while DPO utilizes environmental feedback. Experimental results show the superiority of our proposed model on REVERIE compared to the previous state-of-the-art.
Related papers
- RLAP: A Reinforcement Learning Enhanced Adaptive Planning Framework for Multi-step NLP Task Solving [14.11486479935094]
Multi-step planning has been widely employed to enhance the performance of large language models (LLMs) on downstream natural language processing (NLP) tasks.<n>We propose a Reinforcement Learning enhanced Adaptive Planning framework (RLAP) to better solve multi-step NLP tasks.
arXiv Detail & Related papers (2025-05-17T08:06:14Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
Large Language Models (LLMs) have demonstrated significant promise as agents in interactive tasks.
We propose a method for transferring the performance of an LLM with billions of parameters to a much smaller language model.
In ScienceWorld, a challenging and multi-task interactive text environment, our method surpasses standard imitation learning based solely on elementary actions by 16.7%.
arXiv Detail & Related papers (2024-05-04T20:34:06Z) - Empowering Large Language Models on Robotic Manipulation with Affordance Prompting [23.318449345424725]
Large language models fail to interact with the physical world by generating control sequences properly.
Existing LLM-based approaches circumvent this problem by relying on additional pre-defined skills or pre-trained sub-policies.
We propose a framework called LLM+A(ffordance) where the LLM serves as both the sub-task planner and the motion controller.
arXiv Detail & Related papers (2024-04-17T03:06:32Z) - LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning [78.2390460278551]
Conventional Task and Motion Planning (TAMP) approaches rely on manually crafted interfaces connecting symbolic task planning with continuous motion generation.
Here, we present LLM3, a novel Large Language Model (LLM)-based TAMP framework featuring a domain-independent interface.
Specifically, we leverage the powerful reasoning and planning capabilities of pre-trained LLMs to propose symbolic action sequences and select continuous action parameters for motion planning.
arXiv Detail & Related papers (2024-03-18T08:03:47Z) - LgTS: Dynamic Task Sampling using LLM-generated sub-goals for
Reinforcement Learning Agents [10.936460061405157]
We propose LgTS (LLM-guided Teacher-Student learning), a novel approach that explores the planning abilities of LLMs.
Our approach does not assume access to a propreitary or a fine-tuned LLM, nor does it require pre-trained policies that achieve the sub-goals proposed by the LLM.
arXiv Detail & Related papers (2023-10-14T00:07:03Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
Pre-trained large language models (LLMs) capture procedural knowledge about the world.
Plan, Eliminate, and Track (PET) framework translates a task description into a list of high-level sub-tasks.
PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.
arXiv Detail & Related papers (2023-05-03T20:11:22Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.