ST-DPGAN: A Privacy-preserving Framework for Spatiotemporal Data Generation
- URL: http://arxiv.org/abs/2406.03404v1
- Date: Tue, 4 Jun 2024 04:43:54 GMT
- Title: ST-DPGAN: A Privacy-preserving Framework for Spatiotemporal Data Generation
- Authors: Wei Shao, Rongyi Zhu, Cai Yang, Chandra Thapa, Muhammad Ejaz Ahmed, Seyit Camtepe, Rui Zhang, DuYong Kim, Hamid Menouar, Flora D. Salim,
- Abstract summary: We propose a Graph-based model for generating privacy-protected data.
Experiments conducted on three real-worldtemporal datasets validate the efficacy of our model.
The prediction model trained on our generated data maintains a competitive edge compared to the model trained on the original data.
- Score: 19.18074489351738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatiotemporal data is prevalent in a wide range of edge devices, such as those used in personal communication and financial transactions. Recent advancements have sparked a growing interest in integrating spatiotemporal analysis with large-scale language models. However, spatiotemporal data often contains sensitive information, making it unsuitable for open third-party access. To address this challenge, we propose a Graph-GAN-based model for generating privacy-protected spatiotemporal data. Our approach incorporates spatial and temporal attention blocks in the discriminator and a spatiotemporal deconvolution structure in the generator. These enhancements enable efficient training under Gaussian noise to achieve differential privacy. Extensive experiments conducted on three real-world spatiotemporal datasets validate the efficacy of our model. Our method provides a privacy guarantee while maintaining the data utility. The prediction model trained on our generated data maintains a competitive performance compared to the model trained on the original data.
Related papers
- HSTFL: A Heterogeneous Federated Learning Framework for Misaligned Spatiotemporal Forecasting [6.00534246138727]
We propose a Heterogeneous Spatiotemporal Learning (HSTFL) framework to enable multiple clients to harness time series data from different domains.
We show that HSTFL not only effectively resists inference attacks but also provides a significant improvement against various baselines.
arXiv Detail & Related papers (2024-09-27T06:51:11Z) - KIPPS: Knowledge infusion in Privacy Preserving Synthetic Data
Generation [0.0]
Generative Deep Learning models struggle to model discrete and non-Gaussian features that have domain constraints.
Generative models create synthetic data that repeats sensitive features, which is a privacy risk.
This paper proposes a novel model, KIPPS, that infuses Domain and Regulatory Knowledge from Knowledge Graphs into Generative Deep Learning models for enhanced Privacy Preserving Synthetic data generation.
arXiv Detail & Related papers (2024-09-25T19:50:03Z) - Differentially Private Spatiotemporal Trajectory Synthesis with Retained Data Utility [0.3277163122167433]
DP-STTS is a differentially private synthesizer with high data utility.
Synthetic trajectories are generated from the noisy model.
Experiments one real-life dataset demonstrate that DP-STTS provides good data utility.
arXiv Detail & Related papers (2024-08-23T05:17:36Z) - Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
We evaluate the utility of five state-of-the-art synthesis approaches in terms of real-world applicability.
We focus on so-called trip data that encode fine granular urban movements such as GPS-tracked taxi rides.
One model fails to produce data within reasonable time and another generates too many jumps to meet the requirements for map matching.
arXiv Detail & Related papers (2024-07-03T16:08:05Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - P3GM: Private High-Dimensional Data Release via Privacy Preserving
Phased Generative Model [23.91327154831855]
This paper proposes privacy-preserving phased generative model (P3GM) for releasing sensitive data.
P3GM employs the two-phase learning process to make it robust against the noise, and to increase learning efficiency.
Compared with the state-of-the-art methods, our generated samples look fewer noises and closer to the original data in terms of data diversity.
arXiv Detail & Related papers (2020-06-22T09:47:54Z) - A Critical Overview of Privacy-Preserving Approaches for Collaborative
Forecasting [0.0]
Cooperation between different data owners may lead to an improvement in forecast quality.
Due to business competitive factors and personal data protection questions, said data owners might be unwilling to share their data.
This paper analyses the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy.
arXiv Detail & Related papers (2020-04-20T20:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.