Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis
- URL: http://arxiv.org/abs/2406.03430v1
- Date: Wed, 5 Jun 2024 16:29:03 GMT
- Title: Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis
- Authors: Moein Heidari, Sina Ghorbani Kolahi, Sanaz Karimijafarbigloo, Bobby Azad, Afshin Bozorgpour, Soheila Hatami, Reza Azad, Ali Diba, Ulas Bagci, Dorit Merhof, Ilker Hacihaliloglu,
- Abstract summary: State Space Models (SSMs) have garnered immense interest lately in sequential modeling and visual representation learning.
Capitalizing on the advances in computer vision, medical imaging has heralded a new epoch with Mamba models.
- Score: 8.115549269867403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequence modeling plays a vital role across various domains, with recurrent neural networks being historically the predominant method of performing these tasks. However, the emergence of transformers has altered this paradigm due to their superior performance. Built upon these advances, transformers have conjoined CNNs as two leading foundational models for learning visual representations. However, transformers are hindered by the $\mathcal{O}(N^2)$ complexity of their attention mechanisms, while CNNs lack global receptive fields and dynamic weight allocation. State Space Models (SSMs), specifically the \textit{\textbf{Mamba}} model with selection mechanisms and hardware-aware architecture, have garnered immense interest lately in sequential modeling and visual representation learning, challenging the dominance of transformers by providing infinite context lengths and offering substantial efficiency maintaining linear complexity in the input sequence. Capitalizing on the advances in computer vision, medical imaging has heralded a new epoch with Mamba models. Intending to help researchers navigate the surge, this survey seeks to offer an encyclopedic review of Mamba models in medical imaging. Specifically, we start with a comprehensive theoretical review forming the basis of SSMs, including Mamba architecture and its alternatives for sequence modeling paradigms in this context. Next, we offer a structured classification of Mamba models in the medical field and introduce a diverse categorization scheme based on their application, imaging modalities, and targeted organs. Finally, we summarize key challenges, discuss different future research directions of the SSMs in the medical domain, and propose several directions to fulfill the demands of this field. In addition, we have compiled the studies discussed in this paper along with their open-source implementations on our GitHub repository.
Related papers
- A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond [2.838321145442743]
Mamba is an alternative to template-based deep learning approaches in medical image analysis.
It has linear time complexity, which is a significant improvement over transformers.
Mamba processes longer sequences without attention mechanisms, enabling faster inference and requiring less memory.
arXiv Detail & Related papers (2024-10-03T10:23:03Z) - Microscopic-Mamba: Revealing the Secrets of Microscopic Images with Just 4M Parameters [12.182070604073585]
CNNs struggle with modeling long-range dependencies, limiting their ability to fully utilize semantic information in images.
Transformers are hampered by the complexity of quadratic computations.
We propose a model based on the Mamba architecture: Microscopic-Mamba.
arXiv Detail & Related papers (2024-09-12T10:01:33Z) - HMT-UNet: A hybird Mamba-Transformer Vision UNet for Medical Image Segmentation [1.5574423250822542]
We propose a U-shape architecture model for medical image segmentation, named Hybird Transformer vision Mamba UNet (HTM-UNet)
We conduct comprehensive experiments on the ISIC17, ISIC18, CVC-300, CVC-ClinicDB, Kvasir, CVC-ColonDB, ETIS-Larib PolypDB public datasets and ZD-LCI-GIM private dataset.
arXiv Detail & Related papers (2024-08-21T02:25:14Z) - State Space Model for New-Generation Network Alternative to Transformers: A Survey [52.812260379420394]
In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks.
To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods.
Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years.
arXiv Detail & Related papers (2024-04-15T07:24:45Z) - LKM-UNet: Large Kernel Vision Mamba UNet for Medical Image Segmentation [9.862277278217045]
In this paper, we introduce a Large Kernel Vision Mamba U-shape Network, or LKM-UNet, for medical image segmentation.
A distinguishing feature of our LKM-UNet is its utilization of large Mamba kernels, excelling in locally spatial modeling compared to small kernel-based CNNs and Transformers.
Comprehensive experiments demonstrate the feasibility and the effectiveness of using large-size Mamba kernels to achieve large receptive fields.
arXiv Detail & Related papers (2024-03-12T05:34:51Z) - The Hidden Attention of Mamba Models [54.50526986788175]
The Mamba layer offers an efficient selective state space model (SSM) that is highly effective in modeling multiple domains.
We show that such models can be viewed as attention-driven models.
This new perspective enables us to empirically and theoretically compare the underlying mechanisms to that of the self-attention layers in transformers.
arXiv Detail & Related papers (2024-03-03T18:58:21Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
This paper introduces a novel Mamba-based model, Swin-UMamba, designed specifically for medical image segmentation tasks.
Swin-UMamba demonstrates superior performance with a large margin compared to CNNs, ViTs, and latest Mamba-based models.
arXiv Detail & Related papers (2024-02-05T18:58:11Z) - VM-UNet: Vision Mamba UNet for Medical Image Segmentation [3.170171905334503]
We propose a U-shape architecture model for medical image segmentation, named Vision Mamba UNet (VM-UNet)
We conduct comprehensive experiments on the ISIC17, ISIC18, and Synapse datasets, and the results indicate that VM-UNet performs competitively in medical image segmentation tasks.
arXiv Detail & Related papers (2024-02-04T13:37:21Z) - Model LEGO: Creating Models Like Disassembling and Assembling Building Blocks [53.09649785009528]
In this paper, we explore a paradigm that does not require training to obtain new models.
Similar to the birth of CNN inspired by receptive fields in the biological visual system, we propose Model Disassembling and Assembling.
For model assembling, we present the alignment padding strategy and parameter scaling strategy to construct a new model tailored for a specific task.
arXiv Detail & Related papers (2022-03-25T05:27:28Z) - Transformers in Medical Imaging: A Survey [88.03790310594533]
Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results.
Medical imaging has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields.
We provide a review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues.
arXiv Detail & Related papers (2022-01-24T18:50:18Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.