A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond
- URL: http://arxiv.org/abs/2410.02362v1
- Date: Thu, 3 Oct 2024 10:23:03 GMT
- Title: A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond
- Authors: Shubhi Bansal, Sreeharish A, Madhava Prasath J, Manikandan S, Sreekanth Madisetty, Mohammad Zia Ur Rehman, Chandravardhan Singh Raghaw, Gaurav Duggal, Nagendra Kumar,
- Abstract summary: Mamba is an alternative to template-based deep learning approaches in medical image analysis.
It has linear time complexity, which is a significant improvement over transformers.
Mamba processes longer sequences without attention mechanisms, enabling faster inference and requiring less memory.
- Score: 2.838321145442743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mamba, a special case of the State Space Model, is gaining popularity as an alternative to template-based deep learning approaches in medical image analysis. While transformers are powerful architectures, they have drawbacks, including quadratic computational complexity and an inability to address long-range dependencies efficiently. This limitation affects the analysis of large and complex datasets in medical imaging, where there are many spatial and temporal relationships. In contrast, Mamba offers benefits that make it well-suited for medical image analysis. It has linear time complexity, which is a significant improvement over transformers. Mamba processes longer sequences without attention mechanisms, enabling faster inference and requiring less memory. Mamba also demonstrates strong performance in merging multimodal data, improving diagnosis accuracy and patient outcomes. The organization of this paper allows readers to appreciate the capabilities of Mamba in medical imaging step by step. We begin by defining core concepts of SSMs and models, including S4, S5, and S6, followed by an exploration of Mamba architectures such as pure Mamba, U-Net variants, and hybrid models with convolutional neural networks, transformers, and Graph Neural Networks. We also cover Mamba optimizations, techniques and adaptations, scanning, datasets, applications, experimental results, and conclude with its challenges and future directions in medical imaging. This review aims to demonstrate the transformative potential of Mamba in overcoming existing barriers within medical imaging while paving the way for innovative advancements in the field. A comprehensive list of Mamba architectures applied in the medical field, reviewed in this work, is available at Github.
Related papers
- MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, denoted as MambaVision, which is specifically tailored for vision applications.
Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features.
We conduct a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - Venturing into Uncharted Waters: The Navigation Compass from Transformer to Mamba [77.21394300708172]
Transformer, a deep neural network architecture, has long dominated the field of natural language processing and beyond.
The recent introduction of Mamba challenges its supremacy, sparks considerable interest among researchers, and gives rise to a series of Mamba-based models that have exhibited notable potential.
This survey paper orchestrates a comprehensive discussion, diving into essential research dimensions, covering: (i) the functioning of the Mamba mechanism and its foundation on the principles of structured state space models; (ii) the proposed improvements and the integration of Mamba with various networks, exploring its potential as a substitute for Transformers; (iii) the combination of
arXiv Detail & Related papers (2024-06-24T15:27:21Z) - Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis [8.115549269867403]
State Space Models (SSMs) have garnered immense interest lately in sequential modeling and visual representation learning.
Capitalizing on the advances in computer vision, medical imaging has heralded a new epoch with Mamba models.
arXiv Detail & Related papers (2024-06-05T16:29:03Z) - Visual Mamba: A Survey and New Outlooks [33.90213491829634]
Mamba, a recent selective structured state space model, excels in long sequence modeling.
Since January 2024, Mamba has been actively applied to diverse computer vision tasks.
This paper reviews visual Mamba approaches, analyzing over 200 papers.
arXiv Detail & Related papers (2024-04-29T16:51:30Z) - ReMamber: Referring Image Segmentation with Mamba Twister [51.291487576255435]
ReMamber is a novel RIS architecture that integrates the power of Mamba with a multi-modal Mamba Twister block.
The Mamba Twister explicitly models image-text interaction, and fuses textual and visual features through its unique channel and spatial twisting mechanism.
arXiv Detail & Related papers (2024-03-26T16:27:37Z) - MedMamba: Vision Mamba for Medical Image Classification [0.0]
Vision transformers (ViTs) and convolutional neural networks (CNNs) have been extensively studied and widely used in medical image classification tasks.
Recent studies have shown that state space models (SSMs) represented by Mamba can effectively model long-range dependencies.
We propose MedMamba, the first Vision Mamba for generalized medical image classification.
arXiv Detail & Related papers (2024-03-06T16:49:33Z) - MambaMIR: An Arbitrary-Masked Mamba for Joint Medical Image Reconstruction and Uncertainty Estimation [21.976184826429826]
This study introduces MambaMIR, a Mamba-based model for medical image reconstruction, as well as its Generative Adversarial Network-based variant, MambaMIR-GAN.
Our proposed MambaMIR inherits several advantages, such as linear complexity, global receptive fields, and dynamic weights, from the original Mamba model.
Experiments conducted on various medical image reconstruction tasks, including fast MRI and SVCT, have demonstrated that MambaMIR and MambaMIR-GAN achieve comparable or superior reconstruction results relative to state-of-the-art methods.
arXiv Detail & Related papers (2024-02-28T16:24:08Z) - Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation [21.1787366866505]
We propose Mamba-UNet, a novel architecture that synergizes the U-Net in medical image segmentation with Mamba's capability.
Mamba-UNet adopts a pure Visual Mamba (VMamba)-based encoder-decoder structure, infused with skip connections to preserve spatial information across different scales of the network.
arXiv Detail & Related papers (2024-02-07T18:33:04Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
This paper introduces a novel Mamba-based model, Swin-UMamba, designed specifically for medical image segmentation tasks.
Swin-UMamba demonstrates superior performance with a large margin compared to CNNs, ViTs, and latest Mamba-based models.
arXiv Detail & Related papers (2024-02-05T18:58:11Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
State of the art foundation models such as GPT-4 perform surprisingly well at in-context learning (ICL)
This work provides empirical evidence that Mamba, a newly proposed state space model, has similar ICL capabilities.
arXiv Detail & Related papers (2024-02-05T16:39:12Z) - Vivim: a Video Vision Mamba for Medical Video Segmentation [52.11785024350253]
This paper presents a Video Vision Mamba-based framework, dubbed as Vivim, for medical video segmentation tasks.
Our Vivim can effectively compress the long-term representation into sequences at varying scales.
Experiments on thyroid segmentation, breast lesion segmentation in ultrasound videos, and polyp segmentation in colonoscopy videos demonstrate the effectiveness and efficiency of our Vivim.
arXiv Detail & Related papers (2024-01-25T13:27:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.