論文の概要: BIPED: Pedagogically Informed Tutoring System for ESL Education
- arxiv url: http://arxiv.org/abs/2406.03486v1
- Date: Wed, 5 Jun 2024 17:49:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 17:12:15.835550
- Title: BIPED: Pedagogically Informed Tutoring System for ESL Education
- Title(参考訳): BIPED:ESL教育のための教育的インフォームド・チューターシステム
- Authors: Soonwoo Kwon, Sojung Kim, Minju Park, Seunghyun Lee, Kyuseok Kim,
- Abstract要約: 大規模言語モデル(LLM)は、容易に利用でき、コスト効率の良い会話型知能チューニングシステム(CITS)として機能する大きな可能性を秘めている。
既存のCITSは、単純な概念だけを教えるか、多様な学習戦略に取り組むために必要な教育的な深さを欠くように設計されている。
バイリンガル PEDagogically-informed Tutoring dataset of one-on-one, human-to- Human English tutoring Interaction。
- 参考スコア(独自算出の注目度): 11.209992106075788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have a great potential to serve as readily available and cost-efficient Conversational Intelligent Tutoring Systems (CITS) for teaching L2 learners of English. Existing CITS, however, are designed to teach only simple concepts or lack the pedagogical depth necessary to address diverse learning strategies. To develop a more pedagogically informed CITS capable of teaching complex concepts, we construct a BIlingual PEDagogically-informed Tutoring Dataset (BIPED) of one-on-one, human-to-human English tutoring interactions. Through post-hoc analysis of the tutoring interactions, we come up with a lexicon of dialogue acts (34 tutor acts and 9 student acts), which we use to further annotate the collected dataset. Based on a two-step framework of first predicting the appropriate tutor act then generating the corresponding response, we implemented two CITS models using GPT-4 and SOLAR-KO, respectively. We experimentally demonstrate that the implemented models not only replicate the style of human teachers but also employ diverse and contextually appropriate pedagogical strategies.
- Abstract(参考訳): 大規模言語モデル(LLM)は、L2学習者に英語を教えるために、容易に利用でき、コスト効率のよい会話型知能学習システム(CITS)として機能する大きな可能性を秘めている。
しかし、既存のCITSは、単純な概念だけを教えるか、多様な学習戦略に取り組むために必要な教育的な深さを欠くように設計されている。
複雑な概念を教えることができるより教育的なCITSを開発するために,1対1の人対人間の英語学習インタラクションのバイリンガルPedagogically-informed Tutoring Dataset(BIPED)を構築した。
教師同士の交流の時間後分析を通じて,対話行為の語彙(教官行為34件,学生行為9件)を抽出し,収集したデータセットをさらに注釈付けする。
GPT-4とSOLAR-KOの2つのCITSモデルをそれぞれ実装した。
実装されたモデルが人間の教師のスタイルを再現するだけでなく、多様かつ文脈的に適切な教育戦略を採用することを実験的に実証した。
関連論文リスト
- Exploring Knowledge Tracing in Tutor-Student Dialogues [53.52699766206808]
本稿では,教師と学生の対話における知識追跡(KT)の最初の試みについて述べる。
そこで本研究では,対話の各ターンに係わる知識コンポーネントやスキルを同定する手法を提案する。
次に,得られたラベル付きデータに様々なKT手法を適用し,対話全体を通して学生の知識レベルを追跡する。
論文 参考訳(メタデータ) (2024-09-24T22:31:39Z) - SPL: A Socratic Playground for Learning Powered by Large Language Model [5.383689446227398]
ソクラティック・プレイグラウンド・フォー・ラーニング (SPL) は GPT-4 をベースとした対話型プレイグラウンドである。
SPLは、個人のニーズに合わせてパーソナライズされた適応的な学習体験を強化することを目的としている。
論文 参考訳(メタデータ) (2024-06-20T01:18:52Z) - Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
本稿ではAdapTと呼ばれる一連のモデルと評価手法を紹介する。
AToMは、学生の過去の信念を共同で推論し、将来の信念の正しさを最適化する適応教育の新しい確率論的モデルである。
本研究は,適応型学習課題の難しさと,それを解決するための学習適応モデルの可能性を両立させるものである。
論文 参考訳(メタデータ) (2024-05-07T17:05:27Z) - Scaffolding Language Learning via Multi-modal Tutoring Systems with Pedagogical Instructions [34.760230622675365]
知的家庭教師システム(ITS)は、人間の家庭教師を模倣し、学習者にカスタマイズされた指導やフィードバックを提供することを目的としている。
生成人工知能の出現に伴い、大規模言語モデル(LLM)は、複雑な会話の相互作用をシステムに付与する。
教育指導がITSの足場形成をいかに促進するかを,子どもに言語学習のための画像記述を指導するケーススタディにより検討した。
論文 参考訳(メタデータ) (2024-04-04T13:22:28Z) - AutoTutor meets Large Language Models: A Language Model Tutor with Rich Pedagogy and Guardrails [43.19453208130667]
大規模言語モデル(LLM)は、自動質問生成からエッセイ評価まで、いくつかのユースケースを教育で発見した。
本稿では,Large Language Models (LLMs) を用いて知的チューリングシステムを構築する可能性について検討する。
MWPTutor は LLM を用いて事前定義された有限状態トランスデューサの状態空間を補う。
論文 参考訳(メタデータ) (2024-02-14T14:53:56Z) - Teacher Perception of Automatically Extracted Grammar Concepts for L2
Language Learning [66.79173000135717]
本研究は、カンナダ語とマラティ語という2つのインドの言語教育に適用する。
我々は、形態素構文(単語順、一致、ケースマーキング、または単語形成の学習)と意味論(語彙の学習)に関する疑問に答える自然なテキストコーパスから記述を抽出する。
我々は,北米の学校から言語教育者の助けを借りて手作業による評価を行い,教材が授業の準備や学習者評価に利用できる可能性を見出した。
論文 参考訳(メタデータ) (2023-10-27T18:17:29Z) - Strategize Before Teaching: A Conversational Tutoring System with
Pedagogy Self-Distillation [35.11534904787774]
本稿では,教育応答生成と教育戦略予測を組み合わせた統合フレームワークを提案する。
我々の実験と分析は、授業戦略がダイアログ学習に与える影響について光を当てた。
論文 参考訳(メタデータ) (2023-02-27T03:43:25Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
言語学習のための2つの対話学習データセットを用いて、様々な生成言語モデルを厳密に分析する。
現在のアプローチでは、制約のある学習シナリオでチューリングをモデル化できますが、制約の少ないシナリオではパフォーマンスが悪くなります。
人的品質評価では, モデルと接地木アノテーションの両方が, 同等のチュータリングの点で低い性能を示した。
論文 参考訳(メタデータ) (2023-01-24T11:00:17Z) - In-context Learning Distillation: Transferring Few-shot Learning Ability
of Pre-trained Language Models [55.78264509270503]
そこで本研究では,大規模モデルから小型モデルへ,文脈内数ショット学習能力を移行するために,文脈内学習蒸留を導入する。
メタ・イン・コンテクスト・タニング(Meta-ICT)とマルチタスク・イン・コンテクスト・タニング(Multitask-ICT)の2つの異なる学習パラダイムの下で、イン・コンテクスト・ラーニング・蒸留を行う。
実験と分析により,マルチタスクICTパラダイムの下で,文脈内学習の目的と言語モデリングの目的が相補的であることが明らかとなった。
論文 参考訳(メタデータ) (2022-12-20T22:11:35Z) - Iterative Teacher-Aware Learning [136.05341445369265]
人間の教育において、教師と学生はコミュニケーション効率を最大化するために適応的に交流することができる。
本稿では,教師の協調意図を可能性関数に組み込むことができる,勾配最適化に基づく教師認識学習者を提案する。
論文 参考訳(メタデータ) (2021-10-01T00:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。