Consistent Relative Confidence and Label-Free Model Selection for
Convolutional Neural Networks
- URL: http://arxiv.org/abs/2108.11845v1
- Date: Thu, 26 Aug 2021 15:14:38 GMT
- Title: Consistent Relative Confidence and Label-Free Model Selection for
Convolutional Neural Networks
- Authors: Bin Liu
- Abstract summary: This paper presents an approach to CNN model selection using only unlabeled data.
The effectiveness and efficiency of the presented method are demonstrated by extensive experimental studies based on datasets MNIST and FasionMNIST.
- Score: 4.497097230665825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper is concerned with image classification based on deep convolutional
neural networks (CNNs). The focus is centered around the following question:
given a set of candidate CNN models, how to select the right one that has the
best generalization property for the current task? Present model selection
methods require access to a batch of labeled data for defining a performance
metric, such as the cross-entropy loss, the classification error rate, the
negative log-likelihood, and so on. In many practical cases, however, labeled
data are not available in time as labeling itself is a time-consuming and
expensive task. To this end, this paper presents an approach to CNN model
selection using only unlabeled data. This method is developed based on a
principle termed consistent relative confidence (CRC). The effectiveness and
efficiency of the presented method are demonstrated by extensive experimental
studies based on datasets MNIST and FasionMNIST.
Related papers
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - Fuzzy Convolution Neural Networks for Tabular Data Classification [0.0]
Convolutional neural networks (CNNs) have attracted a great deal of attention due to their remarkable performance in various domains.
In this paper, we propose a novel framework fuzzy convolution neural network (FCNN) tailored specifically for tabular data.
arXiv Detail & Related papers (2024-06-04T20:33:35Z) - Pseudo Label Selection is a Decision Problem [0.0]
Pseudo-Labeling is a simple and effective approach to semi-supervised learning.
It requires criteria that guide the selection of pseudo-labeled data.
Overfitting can be propagated to the final model by choosing instances with overconfident but wrong predictions.
arXiv Detail & Related papers (2023-09-25T07:48:02Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Cost-Effective Online Contextual Model Selection [14.094350329970537]
We formulate this task as an online contextual active model selection problem, where at each round the learner receives an unlabeled data point along with a context.
The goal is to output the best model for any given context without obtaining an excessive amount of labels.
We propose a contextual active model selection algorithm (CAMS), which relies on a novel uncertainty sampling query criterion defined on a given policy class for adaptive model selection.
arXiv Detail & Related papers (2022-07-13T08:22:22Z) - Using Sum-Product Networks to Assess Uncertainty in Deep Active Learning [3.7507283158673212]
This paper proposes a new and very simple approach to computing uncertainty in deep active learning with a Convolutional Neural Network (CNN)
The main idea is to use the feature representation extracted by the CNN as data for training a Sum-Product Network (SPN)
arXiv Detail & Related papers (2022-06-20T14:28:19Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Delving Deep into Label Smoothing [112.24527926373084]
Label smoothing is an effective regularization tool for deep neural networks (DNNs)
We present an Online Label Smoothing (OLS) strategy, which generates soft labels based on the statistics of the model prediction for the target category.
arXiv Detail & Related papers (2020-11-25T08:03:11Z) - Semi-Supervised Speech Recognition via Graph-based Temporal
Classification [59.58318952000571]
Semi-supervised learning has demonstrated promising results in automatic speech recognition by self-training.
The effectiveness of this approach largely relies on the pseudo-label accuracy.
Alternative ASR hypotheses of an N-best list can provide more accurate labels for an unlabeled speech utterance.
arXiv Detail & Related papers (2020-10-29T14:56:56Z) - Deep Active Learning for Biased Datasets via Fisher Kernel
Self-Supervision [5.352699766206807]
Active learning (AL) aims to minimize labeling efforts for data-demanding deep neural networks (DNNs)
We propose a low-complexity method for feature density matching using self-supervised Fisher kernel (FK)
Our method outperforms state-of-the-art methods on MNIST, SVHN, and ImageNet classification while requiring only 1/10th of processing.
arXiv Detail & Related papers (2020-03-01T03:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.