Robust Communication and Computation using Deep Learning via Joint Uncertainty Injection
- URL: http://arxiv.org/abs/2406.03548v1
- Date: Wed, 5 Jun 2024 18:00:09 GMT
- Title: Robust Communication and Computation using Deep Learning via Joint Uncertainty Injection
- Authors: Robert-Jeron Reifert, Hayssam Dahrouj, Alaa Alameer Ahmad, Haris Gacanin, Aydin Sezgin,
- Abstract summary: The convergence of communication and computation, along with the integration of machine learning and artificial intelligence, stand as key empowering pillars for the sixth-generation of communication systems (6G)
This paper considers a network of one base station serving a number of devices simultaneously using spatial multiplexing.
The paper then presents an innovative deep learning-based approach to simultaneously manage the transmit and computing powers, alongside allocation, amidst uncertainties in both channel and computing states information.
- Score: 15.684142238738797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The convergence of communication and computation, along with the integration of machine learning and artificial intelligence, stand as key empowering pillars for the sixth-generation of communication systems (6G). This paper considers a network of one base station serving a number of devices simultaneously using spatial multiplexing. The paper then presents an innovative deep learning-based approach to simultaneously manage the transmit and computing powers, alongside computation allocation, amidst uncertainties in both channel and computing states information. More specifically, the paper aims at proposing a robust solution that minimizes the worst-case delay across the served devices subject to computation and power constraints. The paper uses a deep neural network (DNN)-based solution that maps estimated channels and computation requirements to optimized resource allocations. During training, uncertainty samples are injected after the DNN output to jointly account for both communication and computation estimation errors. The DNN is then trained via backpropagation using the robust utility, thus implicitly learning the uncertainty distributions. Our results validate the enhanced robust delay performance of the joint uncertainty injection versus the classical DNN approach, especially in high channel and computational uncertainty regimes.
Related papers
- Edge AI Collaborative Learning: Bayesian Approaches to Uncertainty Estimation [0.0]
We focus on determining confidence levels in learning outcomes considering the spatial variability of data encountered by independent agents.
We implement a 3D environment simulation using the Webots platform to simulate collaborative mapping tasks.
Experiments demonstrate that BNNs can effectively support uncertainty estimation in a distributed learning context.
arXiv Detail & Related papers (2024-10-11T09:20:16Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Trustworthy DNN Partition for Blockchain-enabled Digital Twin in Wireless IIoT Networks [32.42557641803365]
Digital twin (DT) has emerged as a promising solution to enhance manufacturing efficiency in industrial Internet of Things (IIoT) networks.
We propose a blockchain-enabled DT (B-DT) framework that employs deep neural network (DNN) partitioning technique and reputation-based consensus mechanism.
arXiv Detail & Related papers (2024-05-28T07:34:12Z) - Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
We develop a neural network with local converging input (NNLCI) for high-fidelity prediction using unstructured data.
As a validation case, the NNLCI method is applied to study inviscid supersonic flows in channels with bumps.
arXiv Detail & Related papers (2023-10-23T19:03:37Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Communication-Efficient Decentralized Federated Learning via One-Bit
Compressive Sensing [52.402550431781805]
Decentralized federated learning (DFL) has gained popularity due to its practicality across various applications.
Compared to the centralized version, training a shared model among a large number of nodes in DFL is more challenging.
We develop a novel algorithm based on the framework of the inexact alternating direction method (iADM)
arXiv Detail & Related papers (2023-08-31T12:22:40Z) - Knowing When to Stop: Delay-Adaptive Spiking Neural Network Classifiers with Reliability Guarantees [36.14499894307206]
Spiking neural networks (SNNs) process time-series data via internal event-driven neural dynamics.
We introduce a novel delay-adaptive SNN-based inference methodology that provides guaranteed reliability for the decisions produced at input-dependent stopping times.
arXiv Detail & Related papers (2023-05-18T22:11:04Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.