\texttt{Range-Arithmetic}: Verifiable Deep Learning Inference on an Untrusted Party
- URL: http://arxiv.org/abs/2505.17623v1
- Date: Fri, 23 May 2025 08:33:50 GMT
- Title: \texttt{Range-Arithmetic}: Verifiable Deep Learning Inference on an Untrusted Party
- Authors: Ali Rahimi, Babak H. Khalaj, Mohammad Ali Maddah-Ali,
- Abstract summary: textttRange-Arithmetic transforms non-arithmetic operations into verifiable steps using sum-check protocols and matrixd range.<n>We show that our method not only matches the performance of existing approaches, but also reduces the computational cost of verifying the results.
- Score: 14.282969274113066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Verifiable computing (VC) has gained prominence in decentralized machine learning systems, where resource-intensive tasks like deep neural network (DNN) inference are offloaded to external participants due to blockchain limitations. This creates a need to verify the correctness of outsourced computations without re-execution. We propose \texttt{Range-Arithmetic}, a novel framework for efficient and verifiable DNN inference that transforms non-arithmetic operations, such as rounding after fixed-point matrix multiplication and ReLU, into arithmetic steps verifiable using sum-check protocols and concatenated range proofs. Our approach avoids the complexity of Boolean encoding, high-degree polynomials, and large lookup tables while remaining compatible with finite-field-based proof systems. Experimental results show that our method not only matches the performance of existing approaches, but also reduces the computational cost of verifying the results, the computational effort required from the untrusted party performing the DNN inference, and the communication overhead between the two sides.
Related papers
- DynScaling: Efficient Verifier-free Inference Scaling via Dynamic and Integrated Sampling [20.605487145370752]
Inference-time scaling has proven effective in boosting large language model (LLM) performance through increased test-time computation.<n>Yet, its practical application is often hindered by reliance on external verifiers or a lack of optimization for realistic computational constraints.<n>We propose DynScaling, which addresses these limitations through two primary innovations: an integrated parallel-sequential sampling strategy and a bandit-based dynamic budget allocation framework.
arXiv Detail & Related papers (2025-06-19T05:40:54Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - Robust Communication and Computation using Deep Learning via Joint Uncertainty Injection [15.684142238738797]
The convergence of communication and computation, along with the integration of machine learning and artificial intelligence, stand as key empowering pillars for the sixth-generation of communication systems (6G)
This paper considers a network of one base station serving a number of devices simultaneously using spatial multiplexing.
The paper then presents an innovative deep learning-based approach to simultaneously manage the transmit and computing powers, alongside allocation, amidst uncertainties in both channel and computing states information.
arXiv Detail & Related papers (2024-06-05T18:00:09Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - REx: Data-Free Residual Quantization Error Expansion [32.87131159997359]
Deep neural networks (DNNs) are ubiquitous in computer vision and natural language processing, but suffer from high inference cost.
With the growing concerns on privacy rights, we focus our efforts on data-free methods.
We propose REx, a quantization method that leverages residual error expansion, along with group sparsity and an ensemble approximation for better parallelization.
arXiv Detail & Related papers (2022-03-28T11:04:45Z) - Global Optimization of Objective Functions Represented by ReLU Networks [77.55969359556032]
Neural networks can learn complex, non- adversarial functions, and it is challenging to guarantee their correct behavior in safety-critical contexts.
Many approaches exist to find failures in networks (e.g., adversarial examples), but these cannot guarantee the absence of failures.
We propose an approach that integrates the optimization process into the verification procedure, achieving better performance than the naive approach.
arXiv Detail & Related papers (2020-10-07T08:19:48Z) - Berrut Approximated Coded Computing: Straggler Resistance Beyond
Polynomial Computing [34.69732430310801]
We propose Berrut Approximated Coded Computing (BACC) as an alternative approach to deal with stragglers effect.
BACC is proven to be numerically stable with low computational complexity.
In particular, BACC is used to train a deep neural network on a cluster of servers.
arXiv Detail & Related papers (2020-09-17T14:23:38Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - Making Convolutions Resilient via Algorithm-Based Error Detection
Techniques [2.696566807900575]
Convolutional Neural Networks (CNNs) accurately process real-time telemetry.
CNNs must execute correctly in the presence of hardware faults.
Full duplication provides the needed assurance but incurs a 100% overhead.
arXiv Detail & Related papers (2020-06-08T23:17:57Z) - Efficient Computation Reduction in Bayesian Neural Networks Through
Feature Decomposition and Memorization [10.182119276564643]
In this paper, an efficient BNN inference flow is proposed to reduce the computation cost.
About half of the computations could be eliminated compared to the traditional approach.
We implement our approach in Verilog and synthesise it with 45 $nm$ FreePDK technology.
arXiv Detail & Related papers (2020-05-08T05:03:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.