Neural empirical interpolation method for nonlinear model reduction
- URL: http://arxiv.org/abs/2406.03562v1
- Date: Wed, 5 Jun 2024 18:17:33 GMT
- Title: Neural empirical interpolation method for nonlinear model reduction
- Authors: Max Hirsch, Federico Pichi, Jan S. Hesthaven,
- Abstract summary: We introduce the neural empirical method (NEIM) for reducing the time complexity of computing the nonlinear term in a reduced order model (ROM)
NEIM is a greedy algorithm which accomplishes this reduction by approximating an affine decomposition of the nonlinear term of the ROM.
Because NEIM is based on a greedy strategy, we are able to provide a basic error analysis to investigate its performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce the neural empirical interpolation method (NEIM), a neural network-based alternative to the discrete empirical interpolation method for reducing the time complexity of computing the nonlinear term in a reduced order model (ROM) for a parameterized nonlinear partial differential equation. NEIM is a greedy algorithm which accomplishes this reduction by approximating an affine decomposition of the nonlinear term of the ROM, where the vector terms of the expansion are given by neural networks depending on the ROM solution, and the coefficients are given by an interpolation of some "optimal" coefficients. Because NEIM is based on a greedy strategy, we are able to provide a basic error analysis to investigate its performance. NEIM has the advantages of being easy to implement in models with automatic differentiation, of being a nonlinear projection of the ROM nonlinearity, of being efficient for both nonlocal and local nonlinearities, and of relying solely on data and not the explicit form of the ROM nonlinearity. We demonstrate the effectiveness of the methodology on solution-dependent and solution-independent nonlinearities, a nonlinear elliptic problem, and a nonlinear parabolic model of liquid crystals.
Related papers
- FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
This paper proposes an efficient nonlinear modeling approach for multiple time series.
It incorporates nonlinear interactions among different time-series variables.
Experimental results show that the proposed algorithm improves the identification of the support of the VAR coefficients in a parsimonious manner.
arXiv Detail & Related papers (2023-09-29T11:42:59Z) - Learning solution of nonlinear constitutive material models using
physics-informed neural networks: COMM-PINN [0.0]
We apply physics-informed neural networks to solve the relations for nonlinear, path-dependent material behavior.
One advantage of this work is that it bypasses the repetitive Newton iterations needed to solve nonlinear equations in complex material models.
arXiv Detail & Related papers (2023-04-10T19:58:49Z) - A deep branching solver for fully nonlinear partial differential
equations [0.1474723404975345]
We present a multidimensional deep learning implementation of a branching algorithm for the numerical solution of fully nonlinear PDEs.
This approach is designed to tackle functional nonlinearities involving gradient terms of any orders.
arXiv Detail & Related papers (2022-03-07T09:46:46Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
We study the generalization of non commutative convolutional neural networks.
We show that non commutative convolutional architectures can be stable to deformations on the space of operators.
arXiv Detail & Related papers (2021-08-23T04:22:58Z) - Inverse Problem of Nonlinear Schr\"odinger Equation as Learning of
Convolutional Neural Network [5.676923179244324]
It is shown that one can obtain a relatively accurate estimate of the considered parameters using the proposed method.
It provides a natural framework in inverse problems of partial differential equations with deep learning.
arXiv Detail & Related papers (2021-07-19T02:54:37Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
In this work, we bridge the gap by introducing the Threshold Learned Iterative Shrinkage Algorithming (NLISTA)
Experiments on synthetic data corroborate our theoretical results and show our method outperforms state-of-the-art methods.
arXiv Detail & Related papers (2020-10-26T11:31:08Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.