論文の概要: BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems
- arxiv url: http://arxiv.org/abs/2406.03616v4
- Date: Wed, 30 Jul 2025 01:09:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 11:57:45.804513
- Title: BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems
- Title(参考訳): BEACON: 高価なブラックボックスシステムにおけるノベルティ探索のためのベイズ最適化戦略
- Authors: Wei-Ting Tang, Ankush Chakrabarty, Joel A. Paulson,
- Abstract要約: ノベルティサーチ(NS)は、シミュレーションや実験を通じて多様なシステムの振る舞いを明らかにすることを目指している。
NS法は一般に、入力空間の密度の高いサンプリングを必要とする進化戦略やその他のメタヒューリスティックに依存している。
サンプル効率のよいベイズ最適化に基づくNSのアプローチであるBEACONを導入し、入力-行動関係が不透明で、評価にコストがかかるような設定に最適化する。
- 参考スコア(独自算出の注目度): 1.204357447396532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Novelty search (NS) refers to a class of exploration algorithms that seek to uncover diverse system behaviors through simulations or experiments. Such diversity is central to many AI-driven discovery and design tasks, including material and drug development, neural architecture search, and reinforcement learning. However, existing NS methods typically rely on evolutionary strategies and other meta-heuristics that require dense sampling of the input space, making them impractical for expensive black-box systems. In this work, we introduce BEACON, a sample-efficient, Bayesian optimization-inspired approach to NS that is tailored for settings where the input-to-behavior relationship is opaque and costly to evaluate. BEACON models this mapping using multi-output Gaussian processes (MOGPs) and selects new inputs by maximizing a novelty metric computed from posterior samples of the MOGP, effectively balancing the exploration-exploitation trade-off. By leveraging recent advances in posterior sampling and high-dimensional GP modeling, our method remains scalable to large input spaces and datasets. We evaluate BEACON across ten synthetic benchmarks and eight real-world tasks, including the design of diverse materials for clean energy applications. Our results show that BEACON significantly outperforms existing NS baselines, consistently discovering a broader set of behaviors under tight evaluation budgets.
- Abstract(参考訳): ノベルティ・サーチ (NS) は、シミュレーションや実験を通じて多様なシステムの振る舞いを解明しようとする探索アルゴリズムのクラスである。
このような多様性は、物質や薬物の開発、ニューラルアーキテクチャ探索、強化学習など、AIによる多くの発見と設計タスクの中心である。
しかし、既存のNS法は一般に、複雑な入力空間のサンプリングを必要とする進化戦略やその他のメタヒューリスティックに依存しており、高価なブラックボックスシステムでは実用的ではない。
本研究では,サンプル効率のよいベイズ最適化に基づくNSアプローチであるBEACONを紹介し,入力-行動関係が不透明で,評価にコストがかかるような設定に適した手法を提案する。
BEACONはこのマッピングをMOGP(Multi-output Gaussian Process)を用いてモデル化し、MOGPの後続サンプルから計算された新規度メトリックを最大化し、探索と探索のトレードオフを効果的にバランスさせることにより、新しい入力を選択する。
近年の後方サンプリングと高次元GPモデリングの進歩を利用して,本手法は大規模入力空間やデータセットに対して拡張性を維持している。
クリーンエネルギー応用のための多種多様な材料の設計を含む,10の総合ベンチマークと8つの実世界のタスクでBEACONを評価した。
実験の結果,BEACONは既存のNSベースラインを著しく上回り,厳格な評価予算の下でより広範な行動群を常に発見していることがわかった。
関連論文リスト
- A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
そこで本研究では,局所探索機能を組み込んだ2段階学習手法と集団最適化アルゴリズムを併用した新しい手法を提案する。
実験の結果,提案手法は最先端の勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-26T17:31:15Z) - MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model
Effectiveness and Efficiency [10.641875933652647]
我々は,多粒度アーキテクチャサーチ(MGAS)を導入し,効率的かつ効率的なニューラルネットワークを探索する。
各粒度レベル固有の離散化関数を学習し、進化したアーキテクチャに従って単位残率を適応的に決定する。
CIFAR-10、CIFAR-100、ImageNetの大規模な実験により、MGASはモデル性能とモデルサイズとのトレードオフを改善するために、他の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-23T16:32:18Z) - Optimistic Active Exploration of Dynamical Systems [52.91573056896633]
我々はOPAXと呼ばれる活発な探索のためのアルゴリズムを開発した。
我々は,OPAXを各エピソードで解決可能な最適制御問題に還元する方法を示す。
実験の結果,OPAXは理論的に健全であるだけでなく,新規な下流タスクのゼロショット計画にも有効であることがわかった。
論文 参考訳(メタデータ) (2023-06-21T16:26:59Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Cheap and Deterministic Inference for Deep State-Space Models of
Interacting Dynamical Systems [38.23826389188657]
本稿では,基礎となる相互作用力学系をモデル化するために,グラフニューラルネットワークを用いた深部状態空間モデルを提案する。
予測分布はマルチモーダルであり、ガウス混合モデルの形をしており、ガウス成分のモーメントは決定論的モーメントマッチングルールによって計算できる。
我々のモーメントマッチングスキームはサンプルのない推論に利用でき、モンテカルロの代替案と比較してより効率的で安定した訓練がもたらされる。
論文 参考訳(メタデータ) (2023-05-02T20:30:23Z) - FLEX: an Adaptive Exploration Algorithm for Nonlinear Systems [6.612035830987298]
本稿では,最適設計に基づく非線形力学探索アルゴリズムFLEXを紹介する。
本ポリシーは,次のステップに関する情報を最大化し,適応探索アルゴリズムを実現する。
FLEXによる性能は競争力があり、計算コストも低い。
論文 参考訳(メタデータ) (2023-04-26T10:20:55Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
本研究では,不確かさを意識した分類器が,強化学習の難しさを解消できることを示す。
正規化最大度(NML)分布の計算法を提案する。
得られたアルゴリズムは、カウントベースの探索法と、報酬関数を学習するための先行アルゴリズムの両方に多くの興味深い関係を持つことを示す。
論文 参考訳(メタデータ) (2021-07-15T08:19:57Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - ConCrete MAP: Learning a Probabilistic Relaxation of Discrete Variables
for Soft Estimation with Low Complexity [9.62543698736491]
ConCrete MAP Detection (CMD)は、大きな逆線形問題に対する反復検出アルゴリズムである。
我々は、SotAと比較して、CMDが有望なパフォーマンス複雑性のトレードオフを特徴付けることを示す。
特に,CMDのソフト出力がデコーダに信頼性を持つことを示す。
論文 参考訳(メタデータ) (2021-02-25T09:54:25Z) - Adaptive Local Bayesian Optimization Over Multiple Discrete Variables [9.860437640748113]
本稿では,チームKAIST OSIのアプローチをステップワイズで記述し,ベースラインアルゴリズムを最大20.39%向上させる。
同様の方法では,ベイジアンとマルチアームドバンディット(mab)の手法を組み合わせ,変数型を考慮した値選択を行う。
経験的評価により,提案手法は既存の手法を異なるタスクにまたがる性能を示す。
論文 参考訳(メタデータ) (2020-12-07T07:51:23Z) - Deep Multi-Fidelity Active Learning of High-dimensional Outputs [17.370056935194786]
我々は,高次元出力で学習するためのディープニューラルネットワークに基づく多忠実度モデルを開発した。
次に,予測エントロピーの原理を拡張する情報に基づく相互獲得関数を提案する。
計算物理学と工学設計のいくつかの応用において,本手法の利点を示す。
論文 参考訳(メタデータ) (2020-12-02T00:02:31Z) - DISPATCH: Design Space Exploration of Cyber-Physical Systems [5.273291582861981]
サイバー物理システム(CPS)の設計は、様々なCPS構成の大規模な検索空間を探索する難題である。
設計空間上のサンプル効率探索のための2段階の手法であるDisdisを提案する。
論文 参考訳(メタデータ) (2020-09-21T23:14:51Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
多くの共通制御アプリケーションにおいて、優れた性能を達成するためには、グローバルに正確なモデルを必要としない。
本稿では,状態-作用空間の有界部分集合上の正確なモデルを得ることを目的としたガウス過程状態空間モデルに対する能動的学習戦略を提案する。
モデル予測制御を用いることで、探索中に収集した情報を統合し、探索戦略を適応的に改善する。
論文 参考訳(メタデータ) (2020-05-04T05:35:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。