論文の概要: Discovering Bias in Latent Space: An Unsupervised Debiasing Approach
- arxiv url: http://arxiv.org/abs/2406.03631v1
- Date: Wed, 5 Jun 2024 21:29:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 18:55:13.508106
- Title: Discovering Bias in Latent Space: An Unsupervised Debiasing Approach
- Title(参考訳): 潜伏空間でバイアスを発見:教師なしの偏見のアプローチ
- Authors: Dyah Adila, Shuai Zhang, Boran Han, Yuyang Wang,
- Abstract要約: 基礎モデルの質問応答能力は、変化を促すために非常に敏感である。
モデルの内部表現において、このバイアスを直接修正することを提案する。
実験により,SteerFairは命令調整によるモデル性能のバラツキを大幅に低減することを示した。
- 参考スコア(独自算出の注目度): 6.67121343477106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The question-answering (QA) capabilities of foundation models are highly sensitive to prompt variations, rendering their performance susceptible to superficial, non-meaning-altering changes. This vulnerability often stems from the model's preference or bias towards specific input characteristics, such as option position or superficial image features in multi-modal settings. We propose to rectify this bias directly in the model's internal representation. Our approach, SteerFair, finds the bias direction in the model's representation space and steers activation values away from it during inference. Specifically, we exploit the observation that bias often adheres to simple association rules, such as the spurious association between the first option and correctness likelihood. Next, we construct demonstrations of these rules from unlabeled samples and use them to identify the bias directions. We empirically show that SteerFair significantly reduces instruction-tuned model performance variance across prompt modifications on three benchmark tasks. Remarkably, our approach surpasses a supervised baseline with 100 labels by an average of 10.86% accuracy points and 12.95 score points and matches the performance with 500 labels.
- Abstract(参考訳): 基礎モデルの質問応答(QA)能力は、変化を促すために非常に敏感であり、その性能は表面的で意味のない変化に影響を受けやすい。
この脆弱性は、オプション位置やマルチモーダル設定における表面画像の特徴など、特定の入力特性に対するモデルの好みや偏見から生じることが多い。
モデルの内部表現において、このバイアスを直接修正することを提案する。
我々のアプローチであるSteerFairは、モデルの表現空間におけるバイアス方向を見つけ、推論中にアクティベーション値から分離する。
具体的には、バイアスが第一の選択肢と正しさの急激な関連性のような単純な関連規則によく従うという観察を利用する。
次に、ラベルのないサンプルからこれらのルールのデモを作成し、バイアス方向を識別する。
我々は,SteerFairが3つのベンチマークタスクの即時修正において,命令調整されたモデル性能のばらつきを著しく低減できることを実証的に示す。
注目すべきは、100のラベルを持つ教師付きベースラインを平均10.86%の精度ポイントと12.95のスコアポイントで上回り、500のラベルとパフォーマンスを一致させることだ。
関連論文リスト
- CosFairNet:A Parameter-Space based Approach for Bias Free Learning [1.9116784879310025]
バイアス付きデータに基づいてトレーニングされたディープニューラルネットワークは、意図しない推論ルールを不注意に学習することが多い。
本稿では,モデルのパラメータ空間内で直接バイアスに対処する新しい手法を提案する。
各種合成および実世界のデータセットにおいて,分類精度の向上と偏りの低減効果を示す。
論文 参考訳(メタデータ) (2024-10-19T13:06:40Z) - Looking at Model Debiasing through the Lens of Anomaly Detection [11.113718994341733]
ディープニューラルネットワークはデータのバイアスに敏感である。
本稿では,異常検出に基づく新しいバイアス同定手法を提案する。
合成および実際のベンチマークデータセット上で、最先端のパフォーマンスに到達する。
論文 参考訳(メタデータ) (2024-07-24T17:30:21Z) - Eliminating Position Bias of Language Models: A Mechanistic Approach [119.34143323054143]
位置バイアスは現代言語モデル (LM) の一般的な問題であることが証明されている。
我々の力学解析は、ほぼ全ての最先端のLMで使われている2つのコンポーネント(因果的注意と相対的位置エンコーディング)に位置バイアスが関係している。
位置バイアスを排除することによって、LM-as-a-judge、検索強化QA、分子生成、数学推論など、下流タスクのパフォーマンスと信頼性が向上する。
論文 参考訳(メタデータ) (2024-07-01T09:06:57Z) - Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair [36.221761997349795]
ディープニューラルネットワークは、データセットバイアスの存在下でターゲットクラスと急激な相関を持つバイアス特性に依存している。
本稿では,本質的特徴の領域を示す空間的指示を明示的に提示する手法を提案する。
実験により, 種々のバイアス重大度を有する合成および実世界のデータセットに対して, 最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2024-04-30T04:13:14Z) - Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction [56.17020601803071]
近年の研究では、事前学習言語モデル(PLM)が、事実知識抽出において「急激なバイアス」に悩まされていることが示されている。
本稿では,突発バイアスを徹底的に調査し緩和することにより,既存のベンチマークの信頼性を向上させることを目的とする。
論文 参考訳(メタデータ) (2024-03-15T02:04:35Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
純粋な相関は、ディープニューラルネットワークの強いバイアスを引き起こし、一般化能力を損なう可能性がある。
ラベルのないサンプルと互換性のある自己監督型脱バイアスフレームワークを提案する。
注目すべきは,提案フレームワークが自己教師付き学習ベースラインの一般化性能を著しく向上させることである。
論文 参考訳(メタデータ) (2022-10-11T08:26:19Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Learning Debiased Models with Dynamic Gradient Alignment and
Bias-conflicting Sample Mining [39.00256193731365]
ディープニューラルネットワークは、堅牢性、一般化、公正性をモデル化するのに有害なデータセットバイアスに悩まされている。
難解な未知のバイアスと戦うための2段階のデバイアス方式を提案する。
論文 参考訳(メタデータ) (2021-11-25T14:50:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。