論文の概要: Shadow and Light: Digitally Reconstructed Radiographs for Disease Classification
- arxiv url: http://arxiv.org/abs/2406.03688v1
- Date: Thu, 6 Jun 2024 02:19:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 18:45:29.508739
- Title: Shadow and Light: Digitally Reconstructed Radiographs for Disease Classification
- Title(参考訳): 影と光:病原体分類のためのデジタル再構成ラジオグラフィー
- Authors: Benjamin Hou, Qingqing Zhu, Tejas Sudarshan Mathai, Qiao Jin, Zhiyong Lu, Ronald M. Summers,
- Abstract要約: DRR-RATEは、21,304人のユニークな患者から50,188個の前方デジタル再構成ラジオグラフィー(DRR)から構成される。
各画像は、対応する放射線学テキストレポートと18の病理学クラスのためのバイナリラベルとがペアリングされる。
我々は,既存の大規模胸部X線リソース,特にCheXpertデータセットとCheXnetモデルと併用して,DRR-RATEの適用性を示す。
- 参考スコア(独自算出の注目度): 8.192975020366777
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we introduce DRR-RATE, a large-scale synthetic chest X-ray dataset derived from the recently released CT-RATE dataset. DRR-RATE comprises of 50,188 frontal Digitally Reconstructed Radiographs (DRRs) from 21,304 unique patients. Each image is paired with a corresponding radiology text report and binary labels for 18 pathology classes. Given the controllable nature of DRR generation, it facilitates the inclusion of lateral view images and images from any desired viewing position. This opens up avenues for research into new and novel multimodal applications involving paired CT, X-ray images from various views, text, and binary labels. We demonstrate the applicability of DRR-RATE alongside existing large-scale chest X-ray resources, notably the CheXpert dataset and CheXnet model. Experiments demonstrate that CheXnet, when trained and tested on the DRR-RATE dataset, achieves sufficient to high AUC scores for the six common pathologies cited in common literature: Atelectasis, Cardiomegaly, Consolidation, Lung Lesion, Lung Opacity, and Pleural Effusion. Additionally, CheXnet trained on the CheXpert dataset can accurately identify several pathologies, even when operating out of distribution. This confirms that the generated DRR images effectively capture the essential pathology features from CT images. The dataset and labels are publicly accessible at https://huggingface.co/datasets/farrell236/DRR-RATE.
- Abstract(参考訳): 本稿では,最近リリースされたCT-RATEデータセットから得られた大規模人工胸部X線データセットであるDRR-RATEを紹介する。
DRR-RATEは、21,304人のユニークな患者から50,188個の前方デジタル再構成ラジオグラフィー(DRR)から構成される。
各画像は、対応する放射線学テキストレポートと18の病理学クラスのためのバイナリラベルとがペアリングされる。
DRR生成の制御可能な性質を考えると、任意の所望の視位置から横方向の視像や画像を含めることを容易にする。
これは、ペア化されたCT、様々なビュー、テキスト、バイナリラベルからのX線画像を含む新しい新しいマルチモーダルアプリケーションの研究の道を開く。
我々は,既存の大規模胸部X線リソース,特にCheXpertデータセットとCheXnetモデルと併用して,DRR-RATEの適用性を示す。
実験により、CheXnetは、DRR-RATEデータセットでトレーニングされ、テストされると、一般的な文献で引用される6つの一般的な病態(Aelectasis, Cardiomegaly, Consolidation, Lung Lesion, Lung Opacity, Pleural Effusion)に対して、高いAUCスコアを得ることができた。
さらに、CheXpertデータセットでトレーニングされたCheXnetは、分散の運用中であっても、いくつかの病理を正確に識別することができる。
この結果,CT画像からDRR画像が重要な病態の特徴を効果的に捉えていることが確認された。
データセットとラベルはhttps://huggingface.co/datasets/farrell236/DRR-RATEで公開されている。
関連論文リスト
- BS-Diff: Effective Bone Suppression Using Conditional Diffusion Models
from Chest X-Ray Images [21.19843479423806]
胸部X線(CXR)は肺検診の低用量モダリティとして一般的に用いられる。
肺領域の約75%は骨と重なり、疾患の検出と診断を妨げている。
骨抑制技術が導入されたが、現在の病院の二重エネルギーサブトラクションイメージング技術は、高価な機器と高放射線にさらされる被検体を必要としている。
本稿では,U-Netアーキテクチャを備えた条件拡散モデルと,オートエンコーダを組み込むシンプルな拡張モジュールを備える骨抑制フレームワークBS-Diffを提案する。
論文 参考訳(メタデータ) (2023-11-26T15:13:13Z) - UMedNeRF: Uncertainty-aware Single View Volumetric Rendering for Medical
Neural Radiance Fields [38.62191342903111]
生成した放射場に基づく不確実性を考慮したMedNeRF(UMedNeRF)ネットワークを提案する。
我々は,CTプロジェクションレンダリングの結果を1つのX線で示し,生成した放射場に基づく他の手法との比較を行った。
論文 参考訳(メタデータ) (2023-11-10T02:47:15Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z) - Radiomics-Guided Global-Local Transformer for Weakly Supervised
Pathology Localization in Chest X-Rays [65.88435151891369]
Radiomics-Guided Transformer (RGT)は、テキストトグロバル画像情報と、テキストトグロバル情報とを融合する。
RGTは、画像トランスフォーマーブランチ、放射能トランスフォーマーブランチ、および画像と放射線情報を集約する融合層から構成される。
論文 参考訳(メタデータ) (2022-07-10T06:32:56Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Contrastive Attention for Automatic Chest X-ray Report Generation [124.60087367316531]
ほとんどの場合、正常領域が胸部X線像全体を支配し、これらの正常領域の対応する記述が最終報告を支配している。
本稿では,現在の入力画像と通常の画像を比較してコントラスト情報を抽出するContrastive Attention(CA)モデルを提案する。
2つの公開データセットで最先端の結果を得る。
論文 参考訳(メタデータ) (2021-06-13T11:20:31Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
放射線写真は、X線を用いて患者の内部解剖を視覚化し、3D情報を2次元平面に投影する。
私たちの知る限りでは、ラジオグラフィビューの合成に関する最初の研究である。
本手法は,3次元空間におけるX線撮影の理解を得ることにより,地中骨ラベルを使わずに,X線撮影による骨抽出と骨抑制に応用できることが示唆された。
論文 参考訳(メタデータ) (2020-12-04T05:08:53Z) - Fused Deep Convolutional Neural Network for Precision Diagnosis of
COVID-19 Using Chest X-Ray Images [0.0]
複数のニューラルネットワークを微調整することで、新型コロナウイルスと正常者の胸部X線スキャンを正確に分類するコンピュータ支援診断(CAD)を提案する。
k倍のクロスバリデーションとベージングアンサンブルを用いることで、99.7%の精度と100%の感度が得られる。
論文 参考訳(メタデータ) (2020-09-15T02:27:20Z) - Joint Modeling of Chest Radiographs and Radiology Reports for Pulmonary
Edema Assessment [39.60171837961607]
我々は,胸部X線写真から肺浮腫の重症度を評価するために,画像と自由テキストの両方で訓練されたニューラルネットワークモデルを開発した。
実験結果から,共同画像・テキスト表現学習は肺浮腫評価の性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2020-08-22T17:28:39Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z) - Evaluation of Contemporary Convolutional Neural Network Architectures
for Detecting COVID-19 from Chest Radiographs [0.0]
胸部X線写真解析のための3つのモデルアーキテクチャを,様々な条件下で訓練し,評価した。
本稿では,現代の研究によって提案された印象的なモデル性能を低下させる問題を見いだす。
論文 参考訳(メタデータ) (2020-06-30T15:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。