論文の概要: Instance Segmentation and Teeth Classification in Panoramic X-rays
- arxiv url: http://arxiv.org/abs/2406.03747v1
- Date: Thu, 6 Jun 2024 04:57:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 18:15:59.977980
- Title: Instance Segmentation and Teeth Classification in Panoramic X-rays
- Title(参考訳): パノラマX線における症例分離と歯の分類
- Authors: Devichand Budagam, Ayush Kumar, Sayan Ghosh, Anuj Shrivastav, Azamat Zhanatuly Imanbayev, Iskander Rafailovich Akhmetov, Dmitrii Kaplun, Sergey Antonov, Artem Rychenkov, Gleb Cyganov, Aleksandr Sinitca,
- Abstract要約: 歯のセグメンテーションと認識は様々な歯科応用や歯科診断において重要である。
この記事では、U-NetとYOLOv8という2つのディープラーニングモデルのパイプラインを提供します。
我々は YOLOv8 と U-Net の機能を利用して, 歯のセグメンテーションの質と信頼性を改善した。
- 参考スコア(独自算出の注目度): 35.8246552579468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Teeth segmentation and recognition are critical in various dental applications and dental diagnosis. Automatic and accurate segmentation approaches have been made possible by integrating deep learning models. Although teeth segmentation has been studied in the past, only some techniques were able to effectively classify and segment teeth simultaneously. This article offers a pipeline of two deep learning models, U-Net and YOLOv8, which results in BB-UNet, a new architecture for the classification and segmentation of teeth on panoramic X-rays that is efficient and reliable. We have improved the quality and reliability of teeth segmentation by utilising the YOLOv8 and U-Net capabilities. The proposed networks have been evaluated using the mean average precision (mAP) and dice coefficient for YOLOv8 and BB-UNet, respectively. We have achieved a 3\% increase in mAP score for teeth classification compared to existing methods, and a 10-15\% increase in dice coefficient for teeth segmentation compared to U-Net across different categories of teeth. A new Dental dataset was created based on UFBA-UESC dataset with Bounding-Box and Polygon annotations of 425 dental panoramic X-rays. The findings of this research pave the way for a wider adoption of object detection models in the field of dental diagnosis.
- Abstract(参考訳): 歯のセグメンテーションと認識は様々な歯科応用や歯科診断において重要である。
ディープラーニングモデルを統合することで、自動的かつ正確なセグメンテーションアプローチが可能になる。
歯の分別は過去にも研究されてきたが、歯の分別と分別を同時に行う技術はいくつかしかなかった。
本稿では,パノラマX線上の歯の分類とセグメンテーションのための新しいアーキテクチャであるBB-UNetとYOLOv8の2つのディープラーニングモデルのパイプラインを提供する。
我々は YOLOv8 と U-Net の機能を利用して, 歯のセグメンテーションの質と信頼性を改善した。
提案したネットワークは平均平均精度 (mAP) と YOLOv8 と BB-UNet のダイス係数を用いて評価されている。
従来の方法と比較して, 歯の分類におけるmAPスコアは3倍に増加し, 歯のセグメンテーションにおけるダイス係数は, U-Netと比較すると10~15倍に増加した。
新しい歯科用データセットがUFBA-UESCデータセットに基づいて作成され、425個の歯科用パノラマX線のバウンディングボックスとポリゴンアノテーションが得られた。
本研究の成果は, 歯科診断分野における対象検出モデルの普及の道を開くものである。
関連論文リスト
- TSegFormer: 3D Tooth Segmentation in Intraoral Scans with Geometry
Guided Transformer [47.18526074157094]
歯科用歯冠および歯肉の詳細な3D情報を提供するために, 歯科用光学式歯内スキャナー (IOS) が広く用いられている。
既往の方法は複雑な境界においてエラーを起こしやすく、患者間で不満足な結果を示す。
マルチタスク3Dトランスフォーマアーキテクチャを用いて, 歯の局所的および大域的依存関係とIOS点群における歯肉の象牙質の両方をキャプチャするTSegFormerを提案する。
論文 参考訳(メタデータ) (2023-11-22T08:45:01Z) - Multiclass Segmentation using Teeth Attention Modules for Dental X-ray
Images [8.041659727964305]
本研究では,スイニングトランスフォーマーとTABを用いたM-Net様構造を取り入れた新しい歯のセグメンテーションモデルを提案する。
提案したTABは、歯の複雑な構造に特化するユニークな注意機構を利用する。
提案アーキテクチャは,各歯とその周辺構造を正確に定義し,局所的およびグローバルな文脈情報を効果的に取得する。
論文 参考訳(メタデータ) (2023-11-07T06:20:34Z) - A Deep Learning Approach to Teeth Segmentation and Orientation from
Panoramic X-rays [1.7366868394060984]
本研究では, 深層学習技術を活用したパノラマX線画像からの歯のセグメンテーションと配向に対する包括的アプローチを提案する。
創傷セグメンテーションのために開発された人気モデルであるFUSegNetをベースとしたモデルを構築した。
主成分分析(PCA)により, 歯の配向を正確に推定する指向性バウンディングボックス(OBB)の生成を導入する。
論文 参考訳(メタデータ) (2023-10-26T06:01:25Z) - Construction of unbiased dental template and parametric dental model for
precision digital dentistry [46.459289444783956]
CBCT画像から正確な歯科用アトラスを作製し, 歯のセグメンテーションを誘導するアンバイアスド歯科用テンプレートを開発した。
実際の被写体のCBCT画像159枚を収集して施工する。
論文 参考訳(メタデータ) (2023-04-07T09:39:03Z) - An Implicit Parametric Morphable Dental Model [79.29420177904022]
歯および歯茎の3次元異形性モデルとして, 第一報を提出した。
これは、各歯と歯茎のコンポーネントワイド表現と、これら各コンポーネントの学習可能な潜在コードに基づいている。
我々の復元品質は、新しいアプリケーションを実現しつつ、最も先進的なグローバルな暗黙の表現と同等です。
論文 参考訳(メタデータ) (2022-11-21T12:23:54Z) - CTooth+: A Large-scale Dental Cone Beam Computed Tomography Dataset and
Benchmark for Tooth Volume Segmentation [21.474631912695315]
深層学習に基づく歯のセグメンテーション法は, 満足度は高いが, 基礎的真実を伴う大量の歯データが必要である。
完全注釈付き22巻とラベルなし146巻の3D歯科用CBCTデータセットCTooth+を構築した。
この研究は、歯容積分画タスクのための新しいベンチマークを提供し、この実験は、将来のAIベースの歯科画像研究と臨床応用のベースラインとして機能する。
論文 参考訳(メタデータ) (2022-08-02T09:13:23Z) - CTooth: A Fully Annotated 3D Dataset and Benchmark for Tooth Volume
Segmentation on Cone Beam Computed Tomography Images [19.79983193894742]
3次元歯のセグメンテーションはコンピュータ支援型歯科診断と治療の前提条件である。
深層学習に基づくセグメンテーション手法は説得力のある結果をもたらすが、訓練には大量の基礎的真理を必要とする。
そこで本研究では,歯金規格のCToothを完全注釈付きコーンビームで計算した。
論文 参考訳(メタデータ) (2022-06-17T13:48:35Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。