論文の概要: OralBBNet: Spatially Guided Dental Segmentation of Panoramic X-Rays with Bounding Box Priors
- arxiv url: http://arxiv.org/abs/2406.03747v2
- Date: Tue, 03 Jun 2025 12:24:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:08.861942
- Title: OralBBNet: Spatially Guided Dental Segmentation of Panoramic X-Rays with Bounding Box Priors
- Title(参考訳): OralBBNet:バウンディングボックスを持つパノラマX線を空間的にガイドした歯科用セグメンテーション
- Authors: Devichand Budagam, Azamat Zhanatuly Imanbayev, Iskander Rafailovich Akhmetov, Aleksandr Sinitca, Sergey Antonov, Dmitrii Kaplun,
- Abstract要約: OralBBNetは、歯の分類とパノラマX線におけるセグメンテーションの精度と堅牢性を改善するように設計されている。
本手法は, 従来の方法と比較して, 平均平均精度 (mAP) が1~3%向上した。
- 参考スコア(独自算出の注目度): 34.82692226532414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Teeth segmentation and recognition play a vital role in a variety of dental applications and diagnostic procedures. The integration of deep learning models has facilitated the development of precise and automated segmentation methods. Although prior research has explored teeth segmentation, not many methods have successfully performed tooth segmentation and detection simultaneously. This study presents UFBA-425, a dental dataset derived from the UFBA-UESC dataset, featuring bounding box and polygon annotations for 425 panoramic dental X-rays. Additionally, this work introduces OralBBNet, an architecture featuring distinct segmentation and detection heads as U-Net and YOLOv8, respectively. OralBBNet is designed to improve the accuracy and robustness of tooth classification and segmentation on panoramic X-rays by leveraging the complementary strengths of U-Net and YOLOv8. Our approach achieved a 1-3% improvement in mean average precision (mAP) for teeth detection compared to existing techniques and a 15-20% improvement in the dice score for teeth segmentation over U-Net over various tooth categories and 2-4% improvement in the dice score when compared with other segmentation architectures. The results of this study establish a foundation for the wider implementation of object detection models in dental diagnostics.
- Abstract(参考訳): 歯のセグメンテーションと認識は、様々な歯科応用と診断方法において重要な役割を担っている。
ディープラーニングモデルの統合により、精密かつ自動化されたセグメンテーション手法の開発が容易になった。
歯のセグメンテーションについてはこれまで研究されてきたが、歯のセグメンテーションと検出を同時に行う方法はほとんどない。
本研究は, UFBA-UESCデータセットから得られた歯科用データセットであるUFBA-425について述べる。
さらに、この研究は、それぞれ異なるセグメンテーションと検出ヘッドをU-NetとYOLOv8として特徴付けるアーキテクチャであるOralBBNetを導入している。
OralBBNetは、U-NetとYOLOv8の相補的な強度を利用して、パノラマX線上の歯の分類とセグメンテーションの精度と堅牢性を向上させるように設計されている。
提案手法は, 従来の方法と比較して平均平均精度 (mAP) が1-3%向上し, 各種の歯群別U-Netよりも15-20%向上し, 歯群別では2-4%改善した。
本研究は, 歯科診断における対象検出モデルのより広範な実装の基盤を確立するものである。
関連論文リスト
- GeoT: Geometry-guided Instance-dependent Transition Matrix for Semi-supervised Tooth Point Cloud Segmentation [48.64133802117796]
GeoTは、半教師付き歯科用セグメンテーションのための擬似ラベルのノイズを明示的にモデル化するために、インスタンス依存遷移行列(IDTM)を使用するフレームワークである。
具体的には, 数万点の歯科的点から生じるIDTMの広い解空間を扱うために, 歯の幾何学的先行性を導入する。
提案手法は,ラベル付きデータの20%しか持たない完全教師付き手法に匹敵する性能を達成し,セグメンテーションを容易にするためにラベル付きデータを完全に活用することができる。
論文 参考訳(メタデータ) (2025-03-21T09:43:57Z) - TSegFormer: 3D Tooth Segmentation in Intraoral Scans with Geometry
Guided Transformer [47.18526074157094]
歯科用歯冠および歯肉の詳細な3D情報を提供するために, 歯科用光学式歯内スキャナー (IOS) が広く用いられている。
既往の方法は複雑な境界においてエラーを起こしやすく、患者間で不満足な結果を示す。
マルチタスク3Dトランスフォーマアーキテクチャを用いて, 歯の局所的および大域的依存関係とIOS点群における歯肉の象牙質の両方をキャプチャするTSegFormerを提案する。
論文 参考訳(メタデータ) (2023-11-22T08:45:01Z) - Multiclass Segmentation using Teeth Attention Modules for Dental X-ray
Images [8.041659727964305]
本研究では,スイニングトランスフォーマーとTABを用いたM-Net様構造を取り入れた新しい歯のセグメンテーションモデルを提案する。
提案したTABは、歯の複雑な構造に特化するユニークな注意機構を利用する。
提案アーキテクチャは,各歯とその周辺構造を正確に定義し,局所的およびグローバルな文脈情報を効果的に取得する。
論文 参考訳(メタデータ) (2023-11-07T06:20:34Z) - A Deep Learning Approach to Teeth Segmentation and Orientation from
Panoramic X-rays [1.7366868394060984]
本研究では, 深層学習技術を活用したパノラマX線画像からの歯のセグメンテーションと配向に対する包括的アプローチを提案する。
創傷セグメンテーションのために開発された人気モデルであるFUSegNetをベースとしたモデルを構築した。
主成分分析(PCA)により, 歯の配向を正確に推定する指向性バウンディングボックス(OBB)の生成を導入する。
論文 参考訳(メタデータ) (2023-10-26T06:01:25Z) - Construction of unbiased dental template and parametric dental model for
precision digital dentistry [46.459289444783956]
CBCT画像から正確な歯科用アトラスを作製し, 歯のセグメンテーションを誘導するアンバイアスド歯科用テンプレートを開発した。
実際の被写体のCBCT画像159枚を収集して施工する。
論文 参考訳(メタデータ) (2023-04-07T09:39:03Z) - An Implicit Parametric Morphable Dental Model [79.29420177904022]
歯および歯茎の3次元異形性モデルとして, 第一報を提出した。
これは、各歯と歯茎のコンポーネントワイド表現と、これら各コンポーネントの学習可能な潜在コードに基づいている。
我々の復元品質は、新しいアプリケーションを実現しつつ、最も先進的なグローバルな暗黙の表現と同等です。
論文 参考訳(メタデータ) (2022-11-21T12:23:54Z) - CTooth+: A Large-scale Dental Cone Beam Computed Tomography Dataset and
Benchmark for Tooth Volume Segmentation [21.474631912695315]
深層学習に基づく歯のセグメンテーション法は, 満足度は高いが, 基礎的真実を伴う大量の歯データが必要である。
完全注釈付き22巻とラベルなし146巻の3D歯科用CBCTデータセットCTooth+を構築した。
この研究は、歯容積分画タスクのための新しいベンチマークを提供し、この実験は、将来のAIベースの歯科画像研究と臨床応用のベースラインとして機能する。
論文 参考訳(メタデータ) (2022-08-02T09:13:23Z) - CTooth: A Fully Annotated 3D Dataset and Benchmark for Tooth Volume
Segmentation on Cone Beam Computed Tomography Images [19.79983193894742]
3次元歯のセグメンテーションはコンピュータ支援型歯科診断と治療の前提条件である。
深層学習に基づくセグメンテーション手法は説得力のある結果をもたらすが、訓練には大量の基礎的真理を必要とする。
そこで本研究では,歯金規格のCToothを完全注釈付きコーンビームで計算した。
論文 参考訳(メタデータ) (2022-06-17T13:48:35Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。