論文の概要: Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
- arxiv url: http://arxiv.org/abs/2406.03789v1
- Date: Thu, 6 Jun 2024 07:01:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 16:09:36.696182
- Title: Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
- Title(参考訳): メッシュに依存しない時空間流予測のためのグラフU-ネットの強化
- Authors: Sunwoong Yang, Ricardo Vinuesa, Namwoo Kang,
- Abstract要約: 本研究では,畳み込みニューラルネットワークに基づく従来のディープラーニングアプローチを克服することを目的とする。
グラフU-Netを用いた一過性流れ場の固有予測を改善するための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 2.3964255330849356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study aims to overcome the conventional deep-learning approaches based on convolutional neural networks, whose applicability to complex geometries and unstructured meshes is limited due to their inherent mesh dependency. We propose novel approaches to improve mesh-agnostic spatio-temporal prediction of transient flow fields using graph U-Nets, enabling accurate prediction on diverse mesh configurations. Key enhancements to the graph U-Net architecture, including the Gaussian mixture model convolutional operator and noise injection approaches, provide increased flexibility in modeling node dynamics: the former reduces prediction error by 95\% compared to conventional convolutional operators, while the latter improves long-term prediction robustness, resulting in an error reduction of 86\%. We also investigate transductive and inductive-learning perspectives of graph U-Nets with proposed improvements. In the transductive setting, they effectively predict quantities for unseen nodes within the trained graph. In the inductive setting, they successfully perform in mesh scenarios with different vortex-shedding periods, showing 98\% improvement in predicting the future flow fields compared to a model trained without the inductive settings. It is found that graph U-Nets without pooling operations, i.e. without reducing and restoring the node dimensionality of the graph data, perform better in inductive settings due to their ability to learn from the detailed structure of each graph. Meanwhile, we also discover that the choice of normalization technique significantly impacts graph U-Net performance.
- Abstract(参考訳): 本研究の目的は、複雑なジオメトリや非構造化メッシュの適用性に制限がある畳み込みニューラルネットワークに基づく従来のディープラーニングアプローチを克服することである。
グラフU-Netを用いてメッシュ非依存の時空間流場の時空間予測を改善する新しい手法を提案し,メッシュ構成の高精度な予測を可能にする。
ガウス混合モデル畳み込み演算子とノイズインジェクションアプローチを含むグラフU-Netアーキテクチャの重要な拡張は、ノードダイナミクスのモデリングにおける柔軟性の向上である: 前者は従来の畳み込み演算子と比較して予測誤差を95%削減し、後者は長期予測の堅牢性を改善し、86\%の誤差削減をもたらす。
また,提案手法を改良したグラフU-Netの帰納的および帰納的学習の視点についても検討する。
トランスダクティブ・セッティングでは、トレーニングされたグラフ内の未確認ノードの量を効果的に予測する。
インダクティブ・セッティングでは、異なる渦破断期間でメッシュ・シナリオをうまく実行し、インダクティブ・セッティングなしでトレーニングされたモデルと比較して、将来のフロー・フィールドを予測するのが98%改善された。
グラフデータのノード次元を小さくしたり復元したりせずに、プール操作をしないグラフU-Netは、各グラフの詳細な構造から学習できるため、インダクティブな設定がより優れていることが判明した。
また,正規化手法の選択がグラフU-Netの性能に大きく影響を与えることも確認した。
関連論文リスト
- FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive Graph-Based Learning [1.4216957119562985]
本稿では,新しい帰納学習手法と一般化可能なGNNベースの予測モデルを導入する。
実験の結果、最先端と比較して9.8%の性能改善が見られた。
論文 参考訳(メタデータ) (2024-05-14T07:53:23Z) - Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
本稿では,グラフニューラルネットワーク(GNN)の解釈可能性向上手法を提案する。
最終結果は、予測タスクに本質的に関連付けられたサブグラフに対応する物理空間内の領域を分離する解釈可能なGNNモデルである。
解釈可能なGNNは、推論中に予測される予測エラーの大部分に対応するグラフノードを特定するためにも使用できる。
論文 参考訳(メタデータ) (2023-11-13T18:37:07Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
高速道路交通における交通流予測を改善するために,注意に基づく動的グラフ畳み込みリカレントニューラルネットワーク(ADG-N)を提案する。
グラフ畳み込み演算のオーバーフィッティングを低減するために、高い相対ノードを強調する専用ゲートカーネルが完全なグラフ上に導入された。
論文 参考訳(メタデータ) (2023-09-13T13:57:21Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - MultiScale MeshGraphNets [65.26373813797409]
我々はMeshGraphNetsからフレームワークを改善するための2つの補完的なアプローチを提案する。
まず、より粗いメッシュ上で高解像度システムの正確なサロゲートダイナミクスを学習できることを実証する。
次に、2つの異なる解像度でメッセージを渡す階層的アプローチ(MultiScale MeshGraphNets)を導入する。
論文 参考訳(メタデータ) (2022-10-02T20:16:20Z) - CCasGNN: Collaborative Cascade Prediction Based on Graph Neural Networks [0.49269463638915806]
カスケード予測は,ネットワーク内の情報拡散をモデル化することを目的とした。
グラフニューラルネットワークとリカレントニューラルネットワークによるネットワーク構造とシーケンス特徴の組み合わせに関する研究
本稿では,個々のプロファイル,構造特徴,シーケンス情報を考慮した新しいCCasGNNを提案する。
論文 参考訳(メタデータ) (2021-12-07T11:37:36Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。