論文の概要: Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
- arxiv url: http://arxiv.org/abs/2406.03789v2
- Date: Thu, 17 Oct 2024 00:44:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:16:47.939950
- Title: Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction
- Title(参考訳): メッシュに依存しない時空間流予測のためのグラフU-ネットの強化
- Authors: Sunwoong Yang, Ricardo Vinuesa, Namwoo Kang,
- Abstract要約: 非定常流場予測のためのグラフU-Netの可能性を探る。
グラフU-Netを用いたメッシュ非依存時間ロバスト性予測の一貫した流れ場を改善するための新しい手法を提案する。
Graph U-Netアーキテクチャの主要な拡張は、ノードの動的モデリングにおける柔軟性の向上を提供する。
- 参考スコア(独自算出の注目度): 2.3964255330849356
- License:
- Abstract: This study aims to overcome the limitations of conventional deep-learning approaches based on convolutional neural networks in complex geometries and unstructured meshes by exploring the potential of Graph U-Nets for unsteady flow-field prediction. We present a comprehensive investigation of Graph U-Nets, originally developed for classification tasks, now tailored for mesh-agnostic spatio-temporal forecasting of fluid dynamics. Our focus is on enhancing their performance through systematic hyperparameter tuning and architectural modifications. We propose novel approaches to improve mesh-agnostic spatio-temporal prediction of transient flow fields using Graph U-Nets, enabling accurate prediction on diverse mesh configurations. Key enhancements to the Graph U-Net architecture, including the Gaussian-mixture-model convolutional operator and noise injection approaches, provide increased flexibility in modeling node dynamics: the former reduces prediction error by 95\% compared to conventional convolutional operators, while the latter improves long-term prediction robustness, resulting in an error reduction of 86\%. We demonstrate the effectiveness of these enhancements in both transductive and inductive learning settings, showcasing the adaptability of Graph U-Nets to various flow conditions and mesh structures. This work contributes to the field of reduced-order modeling for computational fluid dynamics by establishing Graph U-Nets as a viable and flexible alternative to convolutional neural networks, capable of accurately and efficiently predicting complex fluid flow phenomena across diverse scenarios.
- Abstract(参考訳): 本研究では,非定常流場予測のためのグラフU-Netの可能性を探究することによって,複雑なジオメトリや非構造メッシュにおける畳み込みニューラルネットワークに基づく従来のディープラーニングアプローチの限界を克服することを目的とする。
本稿では、もともと分類タスク用に開発されたグラフU-Netを網羅的に検討し、現在では流体力学のメッシュ非依存時空間予測に特化している。
私たちの焦点は、体系的なハイパーパラメータチューニングとアーキテクチャ修正によるパフォーマンスの向上にあります。
グラフU-Netを用いてメッシュ非依存の時空間流場の時空間予測を改善する新しい手法を提案し,メッシュ構成の高精度な予測を可能にする。
ガウス混合モデル畳み込み演算子やノイズインジェクションアプローチを含むグラフU-Netアーキテクチャの主要な拡張は、ノードダイナミクスのモデリングにおける柔軟性の向上である: 前者は従来の畳み込み演算子と比較して予測誤差を95%削減し、後者は長期予測の堅牢性を改善し、エラーの86%削減をもたらす。
本稿では,グラフU-Netの様々なフロー条件やメッシュ構造への適応性を示す,トランスダクティブおよびインダクティブな学習環境におけるこれらの拡張の有効性を示す。
この研究は、畳み込みニューラルネットワークの代替としてグラフU-Netを確立することにより、計算流体力学の低次モデリングの分野に寄与し、様々なシナリオで複雑な流体現象を正確かつ効率的に予測することができる。
関連論文リスト
- FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive Graph-Based Learning [1.4216957119562985]
本稿では,新しい帰納学習手法と一般化可能なGNNベースの予測モデルを導入する。
実験の結果、最先端と比較して9.8%の性能改善が見られた。
論文 参考訳(メタデータ) (2024-05-14T07:53:23Z) - Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
本稿では,グラフニューラルネットワーク(GNN)の解釈可能性向上手法を提案する。
最終結果は、予測タスクに本質的に関連付けられたサブグラフに対応する物理空間内の領域を分離する解釈可能なGNNモデルである。
解釈可能なGNNは、推論中に予測される予測エラーの大部分に対応するグラフノードを特定するためにも使用できる。
論文 参考訳(メタデータ) (2023-11-13T18:37:07Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
高速道路交通における交通流予測を改善するために,注意に基づく動的グラフ畳み込みリカレントニューラルネットワーク(ADG-N)を提案する。
グラフ畳み込み演算のオーバーフィッティングを低減するために、高い相対ノードを強調する専用ゲートカーネルが完全なグラフ上に導入された。
論文 参考訳(メタデータ) (2023-09-13T13:57:21Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - MultiScale MeshGraphNets [65.26373813797409]
我々はMeshGraphNetsからフレームワークを改善するための2つの補完的なアプローチを提案する。
まず、より粗いメッシュ上で高解像度システムの正確なサロゲートダイナミクスを学習できることを実証する。
次に、2つの異なる解像度でメッセージを渡す階層的アプローチ(MultiScale MeshGraphNets)を導入する。
論文 参考訳(メタデータ) (2022-10-02T20:16:20Z) - CCasGNN: Collaborative Cascade Prediction Based on Graph Neural Networks [0.49269463638915806]
カスケード予測は,ネットワーク内の情報拡散をモデル化することを目的とした。
グラフニューラルネットワークとリカレントニューラルネットワークによるネットワーク構造とシーケンス特徴の組み合わせに関する研究
本稿では,個々のプロファイル,構造特徴,シーケンス情報を考慮した新しいCCasGNNを提案する。
論文 参考訳(メタデータ) (2021-12-07T11:37:36Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。