論文の概要: ReST-MCTS*: LLM Self-Training via Process Reward Guided Tree Search
- arxiv url: http://arxiv.org/abs/2406.03816v1
- Date: Thu, 6 Jun 2024 07:40:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 15:59:34.057791
- Title: ReST-MCTS*: LLM Self-Training via Process Reward Guided Tree Search
- Title(参考訳): ReST-MCTS*:プロセスリワードガイドツリーサーチによるLCM自己学習
- Authors: Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, Jie Tang,
- Abstract要約: ReST-MCTS*は、プロセス報酬ガイダンスとツリー検索MCTS*を統合し、高品質な推論トレースを収集する。
まず,ReST-MCTS*における木探索ポリシーは,従来のLCM推論基準よりも精度が高いことを示した。
次に、この木探索ポリシーによって探索されたトレースをトレーニングデータとして使用することにより、複数の反復に対して3つの言語モデルを継続的に拡張できることを示す。
- 参考スコア(独自算出の注目度): 44.750390996904635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent methodologies in LLM self-training mostly rely on LLM generating responses and filtering those with correct output answers as training data. This approach often yields a low-quality fine-tuning training set (e.g., incorrect plans or intermediate reasoning). In this paper, we develop a reinforced self-training approach, called ReST-MCTS*, based on integrating process reward guidance with tree search MCTS* for collecting higher-quality reasoning traces as well as per-step value to train policy and reward models. ReST-MCTS* circumvents the per-step manual annotation typically used to train process rewards by tree-search-based reinforcement learning: Given oracle final correct answers, ReST-MCTS* is able to infer the correct process rewards by estimating the probability this step can help lead to the correct answer. These inferred rewards serve dual purposes: they act as value targets for further refining the process reward model and also facilitate the selection of high-quality traces for policy model self-training. We first show that the tree-search policy in ReST-MCTS* achieves higher accuracy compared with prior LLM reasoning baselines such as Best-of-N and Tree-of-Thought, within the same search budget. We then show that by using traces searched by this tree-search policy as training data, we can continuously enhance the three language models for multiple iterations, and outperform other self-training algorithms such as ReST$^\text{EM}$ and Self-Rewarding LM.
- Abstract(参考訳): LLM自己学習における最近の方法論は、主にLLM生成応答と正しい出力回答を持つ者をトレーニングデータとしてフィルタリングすることに依存している。
このアプローチは、しばしば低品質の微調整トレーニングセット(例えば、間違った計画や中間的推論)をもたらす。
本稿では,プロセス報酬ガイダンスと木探索MCTS*を統合することで,高品質な推論トレースの収集と,トレーニング方針や報酬モデルに対するステップ単位の価値を向上する,ReST-MCTS*と呼ばれる強化自己学習手法を開発する。
ReST-MCTS*は、ツリー検索ベースの強化学習によってプロセス報酬をトレーニングするために一般的に使用されるステップごとのマニュアルアノテーションを回避する: オラクルの最終正解が与えられた場合、ReST-MCTS*は、このステップが正しい答えにつながる確率を推定することで、正しいプロセス報酬を推測することができる。
これらの推論された報酬は、プロセス報酬モデルをさらに洗練するための価値目標として機能し、ポリシーモデルによる自己学習のための高品質なトレースの選択を促進する。
ReST-MCTS* における木探索ポリシーは,Best-of-N や Tree-of-Thought といった従来の LLM 推論ベースラインと比較して,同じ検索予算内で高い精度が得られることを示す。
次に、この木探索ポリシーによって探索されたトレースをトレーニングデータとして使用することにより、複数の反復に対して連続的に3つの言語モデルを拡張し、ReST$^\text{EM}$やSelf-Rewarding LMなどの自己学習アルゴリズムより優れていることを示す。
関連論文リスト
- Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Let's Reinforce Step by Step [10.65244642965387]
人間のフィードバックからの強化学習をモデル推論の形式化に活用する。
以上の結果から, PRM法により得られる微粒な報酬は, 単純な数学的推論の精度を高めることが示唆された。
また、モデル性能において、報酬アグリゲーション関数が果たす重要な役割を示す。
論文 参考訳(メタデータ) (2023-11-10T01:35:51Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - Autonomous Tree-search Ability of Large Language Models [58.68735916408101]
大規模言語モデルは、高度なプロンプト技術で顕著な推論能力に優れています。
近年の研究では、LLMがより困難な推論タスクを解くために受動的木探索を行えるように、検索ロジックを定義するために外部プログラムを活用することが提案されている。
我々は,LLMの自律木探索能力という新しい概念を提案し,正しい解を求める探索軌跡を含む応答を自動生成する。
論文 参考訳(メタデータ) (2023-10-14T14:14:38Z) - Reinforced Self-Training (ReST) for Language Modeling [56.75447441157628]
人間からのフィードバック(RLHF)からの強化学習は、人間の好みに合わせることで、大きな言語モデル(LLM)の出力の品質を向上させることができる。
強化自己学習(Reinforced Self-Training, ReST)と呼ばれる, バッチ強化学習(RL)の成長にインスパイアされたLLMを人間の好みに合わせるための簡単なアルゴリズムを提案する。
この結果から,ReSTは自動測定値と機械翻訳ベンチマークの人的評価によって,計算とサンプル効率で翻訳品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-08-17T14:12:48Z) - Learning to Ask Conversational Questions by Optimizing Levenshtein
Distance [83.53855889592734]
明示的な編集動作によって最小レベンシュテイン距離(MLD)を最適化する強化反復シーケンス編集(RISE)フレームワークを導入する。
RISEは会話の特徴に関連するトークンに注意を払うことができる。
2つのベンチマークデータセットの実験結果から、RISEは最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-30T08:44:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。