ReST-MCTS*: LLM Self-Training via Process Reward Guided Tree Search
- URL: http://arxiv.org/abs/2406.03816v3
- Date: Mon, 18 Nov 2024 05:36:16 GMT
- Title: ReST-MCTS*: LLM Self-Training via Process Reward Guided Tree Search
- Authors: Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, Jie Tang,
- Abstract summary: We develop a reinforced self-training approach, called ReST-MCTS*, based on integrating process reward guidance with tree search MCTS* for collecting higher-quality reasoning traces as well as per-step value to train policy and reward models.
We first show that the tree-search policy in ReST-MCTS* achieves higher accuracy compared with prior LLM reasoning baselines such as Best-of-N and Tree-of-Thought, within the same search budget.
- Score: 50.45155830888697
- License:
- Abstract: Recent methodologies in LLM self-training mostly rely on LLM generating responses and filtering those with correct output answers as training data. This approach often yields a low-quality fine-tuning training set (e.g., incorrect plans or intermediate reasoning). In this paper, we develop a reinforced self-training approach, called ReST-MCTS*, based on integrating process reward guidance with tree search MCTS* for collecting higher-quality reasoning traces as well as per-step value to train policy and reward models. ReST-MCTS* circumvents the per-step manual annotation typically used to train process rewards by tree-search-based reinforcement learning: Given oracle final correct answers, ReST-MCTS* is able to infer the correct process rewards by estimating the probability this step can help lead to the correct answer. These inferred rewards serve dual purposes: they act as value targets for further refining the process reward model and also facilitate the selection of high-quality traces for policy model self-training. We first show that the tree-search policy in ReST-MCTS* achieves higher accuracy compared with prior LLM reasoning baselines such as Best-of-N and Tree-of-Thought, within the same search budget. We then show that by using traces searched by this tree-search policy as training data, we can continuously enhance the three language models for multiple iterations, and outperform other self-training algorithms such as ReST$^\text{EM}$ and Self-Rewarding LM. We release all code at https://github.com/THUDM/ReST-MCTS.
Related papers
- CREAM: Consistency Regularized Self-Rewarding Language Models [34.325289477993586]
Self-rewarding large language models (LLM) have successfully applied LLM-as-a-Judge to improve the alignment performance without the need of human annotations for preference data.
However, there is no guarantee of accuracy in the rewarding and ranking, which is critical for ensuring accurate rewards and high-quality preference data.
We propose a Consistency Regularized sElf-rewarding lAnguage Model (CREAM) that leverages the rewarding consistency across different iterations to regularize the self-rewarding training.
arXiv Detail & Related papers (2024-10-16T16:51:01Z) - Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning [90.23629291067763]
A promising approach for improving reasoning in large language models is to use process reward models (PRMs)
PRMs provide feedback at each step of a multi-step reasoning trace, potentially improving credit assignment over outcome reward models (ORMs)
To improve a base policy by running search against a PRM or using it as dense rewards for reinforcement learning (RL), we ask: "How should we design process rewards?"
We theoretically characterize the set of good provers and our results show that optimizing process rewards from such provers improves exploration during test-time search and online RL.
arXiv Detail & Related papers (2024-10-10T17:31:23Z) - Step-level Value Preference Optimization for Mathematical Reasoning [6.318873143509028]
We introduce a novel algorithm called Step-level Value Preference Optimization (SVPO)
Our method achieves state-of-the-art performance on both in-domain and out-of-domain mathematical reasoning benchmarks.
arXiv Detail & Related papers (2024-06-16T09:06:17Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - Autonomous Tree-search Ability of Large Language Models [58.68735916408101]
Large Language Models have excelled in remarkable reasoning capabilities with advanced prompting techniques.
Recent works propose to utilize external programs to define search logic, such that LLMs can perform passive tree search to solve more challenging reasoning tasks.
We propose a new concept called autonomous tree-search ability of LLM, which can automatically generate a response containing search trajectories for the correct answer.
arXiv Detail & Related papers (2023-10-14T14:14:38Z) - Reinforced Self-Training (ReST) for Language Modeling [56.75447441157628]
Reinforcement learning from human feedback (RLHF) can improve the quality of large language model's (LLM) outputs by aligning them with human preferences.
We propose a simple algorithm for aligning LLMs with human preferences inspired by growing batch reinforcement learning (RL), which we call Reinforced Self-Training (ReST)
Our results show that ReST can substantially improve translation quality, as measured by automated metrics and human evaluation on machine translation benchmarks in a compute and sample-efficient manner.
arXiv Detail & Related papers (2023-08-17T14:12:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.