論文の概要: POEM: Interactive Prompt Optimization for Enhancing Multimodal Reasoning of Large Language Models
- arxiv url: http://arxiv.org/abs/2406.03843v3
- Date: Mon, 30 Sep 2024 16:16:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:59:11.874386
- Title: POEM: Interactive Prompt Optimization for Enhancing Multimodal Reasoning of Large Language Models
- Title(参考訳): POEM:大規模言語モデルのマルチモーダル推論強化のための対話型プロンプト最適化
- Authors: Jianben He, Xingbo Wang, Shiyi Liu, Guande Wu, Claudio Silva, Huamin Qu,
- Abstract要約: 大規模言語モデル(LLM)の効率的なプロンプトエンジニアリングを容易にするビジュアル分析システムであるPOEMを提案する。
本システムは,様々なプロンプトによって引き起こされるマルチモーダル知識を包括的に理解するために,モジュール間の相互作用パターンを様々な詳細レベルで探索することを可能にする。
- 参考スコア(独自算出の注目度): 28.072184039405784
- License:
- Abstract: Large language models (LLMs) have exhibited impressive abilities for multimodal content comprehension and reasoning with proper prompting in zero- or few-shot settings. Despite the proliferation of interactive systems developed to support prompt engineering for LLMs across various tasks, most have primarily focused on textual or visual inputs, thus neglecting the complex interplay between modalities within multimodal inputs. This oversight hinders the development of effective prompts that guide model multimodal reasoning processes by fully exploiting the rich context provided by multiple modalities. In this paper, we present POEM, a visual analytics system to facilitate efficient prompt engineering for enhancing the multimodal reasoning performance of LLMs. The system enables users to explore the interaction patterns across modalities at varying levels of detail for a comprehensive understanding of the multimodal knowledge elicited by various prompts. Through diverse recommendations of demonstration examples and instructional principles, POEM supports users in iteratively crafting and refining prompts to better align and enhance model knowledge with human insights. The effectiveness and efficiency of our system are validated through two case studies and interviews with experts.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ゼロまたは少数ショット設定で適切なプロンプトを伴うマルチモーダルコンテンツ理解と推論のための印象的な能力を示した。
様々なタスクにわたるLCMの迅速なエンジニアリングを支援するために開発された対話システムの普及にもかかわらず、そのほとんどはテキストや視覚的な入力に重点を置いており、マルチモーダル入力におけるモダリティ間の複雑な相互作用を無視している。
この監視は、複数のモダリティによって提供されるリッチなコンテキストを完全に活用することによって、マルチモーダル推論プロセスをモデル化する効果的なプロンプトの開発を妨げる。
本稿では,LLMのマルチモーダル推論性能を向上させるために,効率的なプロンプトエンジニアリングを容易にする視覚解析システムであるPOEMを提案する。
本システムは,様々なプロンプトによって引き起こされるマルチモーダル知識を包括的に理解するために,モジュール間の相互作用パターンを様々な詳細レベルで探索することを可能にする。
デモンストレーションの例や指導原則のさまざまな推奨を通じて、POEMは、モデルの知識と人間の洞察をより良く整合させ、強化するプロンプトを反復的に作り、改良するユーザを支援している。
本システムの有効性と有効性は,2つのケーススタディと専門家へのインタビューを通じて検証した。
関連論文リスト
- Image-of-Thought Prompting for Visual Reasoning Refinement in Multimodal Large Language Models [14.765057045747753]
CoT(Chain-of-Thought)と関連する合理性に基づく研究は、複雑な推論タスクにおいて、LLM(Large Language Models)の性能を大幅に向上させた。
本稿では,MLLMの視覚的合理性を段階的に抽出する,IoT(Image-of-Thought)プロンプト手法を提案する。
IoTプロンプトは、さまざまなMLLMのさまざまな視覚的理解タスクにおいて、ゼロショットの視覚的推論性能を改善した。
論文 参考訳(メタデータ) (2024-05-22T17:56:51Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
本稿では,道路シーンに特化して設計されたMM-VUFMの系統解析について述べる。
本研究の目的は,タスク特化モデル,統合マルチモーダルモデル,統合マルチタスクモデル,基礎モデル推進技術など,共通プラクティスの包括的概要を提供することである。
我々は、クローズドループ駆動システム、解釈可能性、エンボディドドライブエージェント、世界モデルなど、重要な課題と今後のトレンドに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-02-05T12:47:09Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
マルチモーダルダイアログ検索のためのパラメータ効率の高いプロンプトチューニング手法であるDialCLIPを提案する。
提案手法では,事前学習された視覚言語モデルCLIP内のプロンプトに抽出された文脈特徴を学習するためのマルチモーダルコンテキスト生成手法を提案する。
様々なタイプの検索を容易にするために,CLIP出力からマルチモーダル表現空間へのマッピングを学習するために,複数の専門家を設計する。
論文 参考訳(メタデータ) (2024-01-02T07:40:12Z) - MMICT: Boosting Multi-Modal Fine-Tuning with In-Context Examples [30.284100018891397]
MMICT(Multi-Modal In-Context Tuning)は、マルチモーダル微調整を促進する新しいパラダイムである。
M-Hub(Multi-Modal Hub)は,異なる入力や目的に応じて様々なマルチモーダル特徴をキャプチャするモジュールである。
M-Hubに基づいてMMICTは、MM-LLMがコンテキスト内視覚誘導されたテキスト特徴から学習し、その後、テキスト誘導された視覚特徴に基づいて条件付き出力を生成する。
論文 参考訳(メタデータ) (2023-12-11T13:11:04Z) - mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with
Modality Collaboration [74.31268379055201]
mPLUG-Owl2は多目的なマルチモーダル言語モデルである。
効果的にモダリティのコラボレーションを活用して、テキストとマルチモーダルの両方のパフォーマンスを改善する。
論文 参考訳(メタデータ) (2023-11-07T14:21:29Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
我々はマルチモーダルなプロンプトを理解するためにロボットを訓練する問題に取り組む。
このようなタスクは、視覚と言語信号の相互接続と相補性を理解するロボットの能力にとって大きな課題となる。
マルチモーダルプロンプトを用いてロボット操作を行うためのポリシーを学習する効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-14T22:24:58Z) - On the Performance of Multimodal Language Models [4.677125897916577]
本研究は、異なるマルチモーダル命令チューニングアプローチの比較分析を行う。
大規模言語モデルにマルチモーダル機能を組み込む際に,アーキテクチャ選択を導く上で重要な洞察を明らかにする。
論文 参考訳(メタデータ) (2023-10-04T23:33:36Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - MM-REACT: Prompting ChatGPT for Multimodal Reasoning and Action [96.33509740612486]
MM-REACTは、マルチモーダル推論とアクションを達成するために、ChatGPTとビジョンエキスパートのプールを統合するシステムパラダイムである。
MM-REACTのプロンプト設計により、言語モデルはマルチモーダル情報を受け入れ、関連づけ、処理することができる。
論文 参考訳(メタデータ) (2023-03-20T18:31:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。