Data-driven discovery of self-similarity using neural networks
- URL: http://arxiv.org/abs/2406.03896v2
- Date: Thu, 21 Nov 2024 02:17:39 GMT
- Title: Data-driven discovery of self-similarity using neural networks
- Authors: Ryota Watanabe, Takanori Ishii, Yuji Hirono, Hirokazu Maruoka,
- Abstract summary: We present a novel neural network-based approach that discovers self-similarity directly from observed data.
The presence of self-similar solutions in a physical problem signals that the governing law contains a function whose arguments are given by power-law exponents.
We train the neural network model using the observed data, and when the training is successful, we can extract the power exponents that characterize scale-transformation symmetries of the physical problem.
- Score: 0.0
- License:
- Abstract: Finding self-similarity is a key step for understanding the governing law behind complex physical phenomena. Traditional methods for identifying self-similarity often rely on specific models, which can introduce significant bias. In this paper, we present a novel neural network-based approach that discovers self-similarity directly from observed data, without presupposing any models. The presence of self-similar solutions in a physical problem signals that the governing law contains a function whose arguments are given by power-law monomials of physical parameters, which are characterized by power-law exponents. The basic idea is to enforce such particular forms structurally in a neural network in a parametrized way. We train the neural network model using the observed data, and when the training is successful, we can extract the power exponents that characterize scale-transformation symmetries of the physical problem. We demonstrate the effectiveness of our method with both synthetic and experimental data, validating its potential as a robust, model-independent tool for exploring self-similarity in complex systems.
Related papers
- InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems.
We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped parameter hemodynamic model from synthetic data to real data with missing components.
arXiv Detail & Related papers (2024-08-15T17:07:40Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
The aim of this thesis is to understand the effectiveness of Unlearning in both associative memory models and generative models.
The selection of structured data enables an associative memory model to retrieve concepts as attractors of a neural dynamics with considerable basins of attraction.
A novel regularization technique for Boltzmann Machines is presented, proving to outperform previously developed methods in learning hidden probability distributions from data-sets.
arXiv Detail & Related papers (2024-03-04T23:12:42Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Extreme sparsification of physics-augmented neural networks for
interpretable model discovery in mechanics [0.0]
We propose to train regularized physics-augmented neural network-based models utilizing a smoothed version of $L0$-regularization.
We show that the method can reliably obtain interpretable and trustworthy models for compressible and incompressible thermodynamicity, yield functions, and hardening models for elastoplasticity.
arXiv Detail & Related papers (2023-10-05T16:28:58Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models.
We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics.
arXiv Detail & Related papers (2023-07-28T13:22:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
We propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena.
Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video.
The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images.
arXiv Detail & Related papers (2022-04-29T11:55:35Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Modeling Implicit Bias with Fuzzy Cognitive Maps [0.0]
This paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets.
We introduce a new reasoning mechanism equipped with a normalization-like transfer function that prevents neurons from saturating.
arXiv Detail & Related papers (2021-12-23T17:04:12Z) - Parsimonious neural networks learn interpretable physical laws [77.34726150561087]
We propose parsimonious neural networks (PNNs) that combine neural networks with evolutionary optimization to find models that balance accuracy with parsimony.
The power and versatility of the approach is demonstrated by developing models for classical mechanics and to predict the melting temperature of materials from fundamental properties.
arXiv Detail & Related papers (2020-05-08T16:15:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.