論文の概要: Data-Centric Label Smoothing for Explainable Glaucoma Screening from Eye Fundus Images
- arxiv url: http://arxiv.org/abs/2406.03903v1
- Date: Thu, 6 Jun 2024 09:38:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 15:29:45.904333
- Title: Data-Centric Label Smoothing for Explainable Glaucoma Screening from Eye Fundus Images
- Title(参考訳): 眼底画像からの緑内障スクリーニングのためのデータ中心ラベル平滑化
- Authors: Adrian Galdran, Miguel A. González Ballester,
- Abstract要約: 我々は、異なるスキルを持つ複数のアノテータからの情報を、カスタマイズされたラベルスムーシングスキームにどのように組み合わせるかに焦点を当てる。
従来のresnet50モデルよりもスムースな手法が優れている。
- 参考スコア(独自算出の注目度): 1.4097020733590644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As current computing capabilities increase, modern machine learning and computer vision system tend to increase in complexity, mostly by means of larger models and advanced optimization strategies. Although often neglected, in many problems there is also much to be gained by considering potential improvements in understanding and better leveraging already-available training data, including annotations. This so-called data-centric approach can lead to substantial performance increases, sometimes beyond what can be achieved by larger models. In this paper we adopt such an approach for the task of justifiable glaucoma screening from retinal images. In particular, we focus on how to combine information from multiple annotators of different skills into a tailored label smoothing scheme that allows us to better employ a large collection of fundus images, instead of discarding samples suffering from inter-rater variability. Internal validation results indicate that our bespoke label smoothing approach surpasses the performance of a standard resnet50 model and also the same model trained with conventional label smoothing techniques, in particular for the multi-label scenario of predicting clinical reasons of glaucoma likelihood in a highly imbalanced screening context. Our code is made available at github.com/agaldran/justraigs .
- Abstract(参考訳): 現在のコンピューティング能力が向上するにつれて、現代の機械学習とコンピュータビジョンシステムは複雑さを増す傾向にある。
しばしば無視されるが、多くの問題において、アノテーションを含む既に利用可能なトレーニングデータのより良い活用に関する潜在的な改善を検討することでも得られる。
このようなデータ中心のアプローチは、時には大規模なモデルによって達成されるものを超えて、大幅なパフォーマンス向上につながる可能性がある。
本稿では網膜画像からの緑内障検診にこのようなアプローチを採用する。
特に、異なるスキルを持つ複数のアノテータからの情報を、異なるスキルを持つ複数のアノテータからどのように組み合わせるかに重点を置いている。
内的検証の結果,本手法は標準resnet50モデルと従来のラベル平滑化技術で訓練されたモデル,特に高度に不均衡なスクリーニング環境で緑内障の臨床的原因を予測するマルチラベルシナリオに勝ることがわかった。
私たちのコードはgithub.com/agaldran/justraigsで利用可能です。
関連論文リスト
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained
Ship Classification [62.425462136772666]
リモートセンシング(RS-FGSC)における船のきめ細かい分類は、クラス間の高い類似性とラベル付きデータの限られた可用性のために大きな課題となる。
大規模な訓練済みビジョンランゲージモデル(VLM)の最近の進歩は、少数ショット学習やゼロショット学習において印象的な能力を示している。
本研究は, 船種別分類精度を高めるために, VLMの可能性を生かしたものである。
論文 参考訳(メタデータ) (2024-03-13T05:48:58Z) - ProbMCL: Simple Probabilistic Contrastive Learning for Multi-label Visual Classification [16.415582577355536]
マルチラベル画像分類は、コンピュータビジョンや医用画像など、多くの領域において難しい課題である。
最近の進歩は、グラフベースとトランスフォーマーベースのメソッドを導入し、パフォーマンスを改善し、ラベルの依存関係をキャプチャしている。
本稿では,これらの課題に対処する新しいフレームワークである確率的多ラベルコントラスト学習(ProbMCL)を提案する。
論文 参考訳(メタデータ) (2024-01-02T22:15:20Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
そこで本研究では,メモリから取得したクロスモーダルな情報を推論時に表現することで,その埋め込みを洗練できる視覚テキストモデルを提案する。
注目すべきことに、これは凍ったCLIPの上に軽量の単層核融合トランスを用いて行うことができる。
検索強化コントラスト訓練(RECO)がCLIPの性能を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-06-12T15:52:02Z) - Bilevel Fast Scene Adaptation for Low-Light Image Enhancement [50.639332885989255]
低照度シーンにおける画像の強調は、コンピュータビジョンにおいて難しいが、広く懸念されている課題である。
主な障害は、異なるシーンにまたがる分散の相違によるモデリングの混乱にある。
上述の潜在対応をモデル化するための双レベルパラダイムを導入する。
エンコーダのシーン非関連な一般化を多様なシーンにもたらすために、双方向学習フレームワークを構築した。
論文 参考訳(メタデータ) (2023-06-02T08:16:21Z) - Self-similarity Driven Scale-invariant Learning for Weakly Supervised
Person Search [66.95134080902717]
自己相似性駆動型スケール不変学習(SSL)という新しいワンステップフレームワークを提案する。
本稿では,ネットワークを前景と学習スケール不変の機能に集中させるための,マルチスケール・エクステンプラー・ブランチを提案する。
PRWおよびCUHK-SYSUデータベースの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-25T04:48:11Z) - Self-Supervised Endoscopic Image Key-Points Matching [1.3764085113103222]
本稿では,深層学習技術に基づく内視鏡画像マッチングのための新しい自己教師型アプローチを提案する。
提案手法は,手作りの標準的なローカル特徴記述子よりも精度とリコールの点で優れていた。
論文 参考訳(メタデータ) (2022-08-24T10:47:21Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
本稿では,弱い監督と生成的敵ネットワークを融合したモデルを提案する。
弱い監督によるラベル推定と並行して、データの離散変数をキャプチャする。
これは、弱い教師付き合成画像と擬似ラベルによるデータ拡張を可能にする最初のアプローチである。
論文 参考訳(メタデータ) (2022-03-22T20:24:21Z) - Improving generalization with synthetic training data for deep learning
based quality inspection [0.0]
教師付きディープラーニングは、トレーニングのために大量の注釈付きイメージを必要とする。
実際には、そのようなデータの収集と注釈付けは費用がかかり、手間がかかる。
ランダムに生成した合成訓練画像を用いることで、領域不安定性に対処できることを示す。
論文 参考訳(メタデータ) (2022-02-25T16:51:01Z) - From Hand-Perspective Visual Information to Grasp Type Probabilities:
Deep Learning via Ranking Labels [6.772076545800592]
Plackett-Luceモデルに基づいた新しい確率分類器を構築し、把握上の確率分布を予測する。
提案モデルは,最もポピュラーで生産性の高い畳み込みニューラルネットワークフレームワークに適用可能であることを示す。
論文 参考訳(メタデータ) (2021-03-08T16:12:38Z) - Improving Robustness using Joint Attention Network For Detecting Retinal
Degeneration From Optical Coherence Tomography Images [0.0]
本稿では,2つのジョイントネットワークからなる新しいアーキテクチャとして,病原性特徴表現を用いることを提案する。
公開データセットに対する実験結果から,提案したジョイントネットワークは,未確認データセット上での最先端網膜疾患分類ネットワークの精度と堅牢性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-05-16T20:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。