論文の概要: Beyond Similarity: Personalized Federated Recommendation with Composite Aggregation
- arxiv url: http://arxiv.org/abs/2406.03933v1
- Date: Thu, 6 Jun 2024 10:17:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 15:19:49.564858
- Title: Beyond Similarity: Personalized Federated Recommendation with Composite Aggregation
- Title(参考訳): 類似性を超えて: 複合集約による個人化フェデレーション
- Authors: Honglei Zhang, Haoxuan Li, Jundong Chen, Sen Cui, Kunda Yan, Abudukelimu Wuerkaixi, Xin Zhou, Zhiqi Shen, Yidong Li,
- Abstract要約: フェデレーションレコメンデーションは、大規模なデバイスからローカルモデルを集約することで、グローバルな知識を集めることを目的としている。
現在の手法は主に、連合視覚コミュニティによって発明された集約関数を利用して、類似したクライアントからのパラメータを集約する。
複合アグリゲーション(FedCA)を用いたパーソナライズド・フェデレーション・レコメンデーション・モデルを提案する。
- 参考スコア(独自算出の注目度): 22.359428566363945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated recommendation aims to collect global knowledge by aggregating local models from massive devices, to provide recommendations while ensuring privacy. Current methods mainly leverage aggregation functions invented by federated vision community to aggregate parameters from similar clients, e.g., clustering aggregation. Despite considerable performance, we argue that it is suboptimal to apply them to federated recommendation directly. This is mainly reflected in the disparate model architectures. Different from structured parameters like convolutional neural networks in federated vision, federated recommender models usually distinguish itself by employing one-to-one item embedding table. Such a discrepancy induces the challenging embedding skew issue, which continually updates the trained embeddings but ignores the non-trained ones during aggregation, thus failing to predict future items accurately. To this end, we propose a personalized Federated recommendation model with Composite Aggregation (FedCA), which not only aggregates similar clients to enhance trained embeddings, but also aggregates complementary clients to update non-trained embeddings. Besides, we formulate the overall learning process into a unified optimization algorithm to jointly learn the similarity and complementarity. Extensive experiments on several real-world datasets substantiate the effectiveness of our proposed model. The source codes are available at https://github.com/hongleizhang/FedCA.
- Abstract(参考訳): フェデレートされたレコメンデーションは、大規模なデバイスからローカルモデルを集約してグローバルな知識を収集し、プライバシーを確保しながらレコメンデーションを提供することを目的としている。
現在の手法は主に、フェデレートされたビジョンコミュニティによって発明された集約関数を利用して、類似のクライアント、例えばクラスタリングアグリゲーションからパラメータを集約する。
かなりの性能にもかかわらず、我々はそれらを直接フェデレーションレコメンデーションに適用するのは最適ではないと論じている。
これは主に異なるモデルアーキテクチャに反映される。
フェデレーションされたビジョンにおける畳み込みニューラルネットワークのような構造化パラメータとは異なり、フェデレーションされた推奨モデルは通常、1対1のアイテム埋め込みテーブルを使用することで自分自身を区別する。
このような不一致は、トレーニングされた埋め込みを継続的に更新するが、アグリゲーション中に訓練されていないものを無視し、将来の項目を正確に予測できない、困難な埋め込みスキュー問題を引き起こす。
この目的のために,FedCA(Composite Aggregation)を用いた個人化されたフェデレーションレコメンデーションモデルを提案し,類似のクライアントを集約してトレーニング済みの埋め込みを強化するだけでなく,補完的なクライアントを集約して非トレーニング型埋め込みを更新する。
さらに,総合的な学習プロセスを統一最適化アルゴリズムに定式化し,類似性と相補性について共同で学習する。
いくつかの実世界のデータセットに対する大規模な実験は、提案モデルの有効性を裏付けるものである。
ソースコードはhttps://github.com/hongleizhang/FedCAで入手できる。
関連論文リスト
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
推薦システム(RSRS)は、ユーザの好みとプライバシの両方に対処する。
通信効率を向上させるために,非一様勾配勾配勾配を取り入れた新しい手法を提案する。
RFRecFの強靭性は、多様なベースラインに比べて優れている。
論文 参考訳(メタデータ) (2024-11-03T12:10:20Z) - FedSDD: Scalable and Diversity-enhanced Distillation for Model
Aggregation in Federated Learning [15.39242780506777]
本稿では,フェデレーション学習のためのスケーラブルで多様性に富んだフェデレーション蒸留方式であるFedSDDを提案する。
FedSDDは、スケーラビリティを高めるために、クライアントの数からトレーニングの複雑さを分離し、集約されたモデルの集合からアンサンブルを構築する。
実験の結果、FedSDDはベンチマークデータセット上でFedAvgやFedDFなど他のFLメソッドよりも優れていた。
論文 参考訳(メタデータ) (2023-12-28T14:10:00Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Personalized Federated Learning with Feature Alignment and Classifier
Collaboration [13.320381377599245]
データの不均一性は、フェデレートラーニングにおける最も難しい問題の1つです。
ディープニューラルネットワークベースのタスクにおけるそのようなアプローチの1つは、共有された特徴表現を採用し、クライアントごとにカスタマイズされた分類子ヘッドを学ぶことである。
本研究では,グローバルなセマンティックな知識を活用して,より優れた表現を学習することで,ローカル・グローバルな特徴アライメントを実現する。
論文 参考訳(メタデータ) (2023-06-20T19:58:58Z) - FedDisco: Federated Learning with Discrepancy-Aware Collaboration [41.828780724903744]
離散性を考慮した協調学習(FedDisco)による新しいアグリゲーション手法を提案する。
当社のFedDiscoはいくつかの最先端の手法より優れており、多くの既存手法に簡単に組み込んでパフォーマンスをさらに向上させることができる。
論文 参考訳(メタデータ) (2023-05-30T17:20:51Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - FedSPLIT: One-Shot Federated Recommendation System Based on Non-negative
Joint Matrix Factorization and Knowledge Distillation [7.621960305708476]
我々はNMF結合因子化に基づく最初の教師なしワンショットフェデレーションCF実装であるFedSPLITを提案する。
FedSPLITは、コミュニケーションの数を大幅に減らすことで、技術の現状と類似した結果を得ることができる(特定の状況では、それよりも優れている)。
論文 参考訳(メタデータ) (2022-05-04T23:42:14Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
フェデレートラーニング(FL)は、エッジデバイスがプライベートデータを中央集約サーバに公開することなく、協調的にモデルを学習することを可能にする。
既存のFLアルゴリズムの多くは、クライアントとサーバにまたがってデプロイされるのと同じアーキテクチャのモデルを必要とする。
本稿では,Fed-ETと呼ばれる新しいアンサンブル知識伝達手法を提案する。
論文 参考訳(メタデータ) (2022-04-27T05:18:32Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
統合学習システムでは、例えばモバイルデバイスや組織参加者といったクライアントは通常、個人の好みや行動パターンが異なる。
本稿では,クライアントグループと各クライアントを統一最適化フレームワークで活用する,新しい重み付きクライアントベースクラスタリングFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-13T02:39:19Z) - Federated Residual Learning [53.77128418049985]
クライアントはローカルモデルを個別に訓練し、サーバ側で共有するモデルと共同で予測を行う。
この新しいフェデレートされた学習フレームワークを使用することで、統合トレーニングが提供するパフォーマンス上のメリットをすべて享受しながら、中央共有モデルの複雑さを最小限にすることができる。
論文 参考訳(メタデータ) (2020-03-28T19:55:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。