Using Sum-Product Networks to Assess Uncertainty in Deep Active Learning
- URL: http://arxiv.org/abs/2206.09798v2
- Date: Tue, 7 Nov 2023 13:54:57 GMT
- Title: Using Sum-Product Networks to Assess Uncertainty in Deep Active Learning
- Authors: Mohamadsadegh Khosravani and Sandra Zilles
- Abstract summary: This paper proposes a new and very simple approach to computing uncertainty in deep active learning with a Convolutional Neural Network (CNN)
The main idea is to use the feature representation extracted by the CNN as data for training a Sum-Product Network (SPN)
- Score: 3.7507283158673212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of deep active learning hinges on the choice of an effective
acquisition function, which ranks not yet labeled data points according to
their expected informativeness. Many acquisition functions are (partly) based
on the uncertainty that the current model has about the class label of a point,
yet there is no generally agreed upon strategy for computing such uncertainty.
This paper proposes a new and very simple approach to computing uncertainty in
deep active learning with a Convolutional Neural Network (CNN). The main idea
is to use the feature representation extracted by the CNN as data for training
a Sum-Product Network (SPN). Since SPNs are typically used for estimating the
distribution of a dataset, they are well suited to the task of estimating class
probabilities that can be used directly by standard acquisition functions such
as max entropy and variational ratio. The effectiveness of our method is
demonstrated in an experimental study on several standard benchmark datasets
for image classification, where we compare it to various state-of-the-art
methods for assessing uncertainty in deep active learning.
Related papers
- Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples [53.95282502030541]
Neural Network-based active learning (NAL) is a cost-effective data selection technique that utilizes neural networks to select and train on a small subset of samples.
We try to move one step forward by offering a unified explanation for the success of both query criteria-based NAL from a feature learning view.
arXiv Detail & Related papers (2024-06-06T10:38:01Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Model Uncertainty based Active Learning on Tabular Data using Boosted
Trees [0.4667030429896303]
Supervised machine learning relies on the availability of good labelled data for model training.
Active learning is a sub-field of machine learning which helps in obtaining the labelled data efficiently.
arXiv Detail & Related papers (2023-10-30T14:29:53Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
We study the sample efficiency of OPE with human preference and establish a statistical guarantee for it.
By appropriately selecting the size of a ReLU network, we show that one can leverage any low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2023-10-16T16:27:06Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Frugal Reinforcement-based Active Learning [12.18340575383456]
We propose a novel active learning approach for label-efficient training.
The proposed method is iterative and aims at minimizing a constrained objective function that mixes diversity, representativity and uncertainty criteria.
We also introduce a novel weighting mechanism based on reinforcement learning, which adaptively balances these criteria at each training iteration.
arXiv Detail & Related papers (2022-12-09T14:17:45Z) - Robust Deep Learning for Autonomous Driving [0.0]
We introduce a new criterion to reliably estimate model confidence: the true class probability ( TCP)
Since the true class is by essence unknown at test time, we propose to learn TCP criterion from data with an auxiliary model, introducing a specific learning scheme adapted to this context.
We tackle the challenge of jointly detecting misclassification and out-of-distributions samples by introducing a new uncertainty measure based on evidential models and defined on the simplex.
arXiv Detail & Related papers (2022-11-14T22:07:11Z) - Making Look-Ahead Active Learning Strategies Feasible with Neural
Tangent Kernels [6.372625755672473]
We propose a new method for approximating active learning acquisition strategies that are based on retraining with hypothetically-labeled candidate data points.
Although this is usually infeasible with deep networks, we use the neural tangent kernel to approximate the result of retraining.
arXiv Detail & Related papers (2022-06-25T06:13:27Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
We present Prior-Data Fitted Networks (PFNs)
PFNs leverage in-context learning in large-scale machine learning techniques to approximate a large set of posteriors.
We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems.
arXiv Detail & Related papers (2021-12-20T13:07:39Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Confidence Estimation via Auxiliary Models [47.08749569008467]
We introduce a novel target criterion for model confidence, namely the true class probability ( TCP)
We show that TCP offers better properties for confidence estimation than standard maximum class probability (MCP)
arXiv Detail & Related papers (2020-12-11T17:21:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.