論文の概要: Shaping History: Advanced Machine Learning Techniques for the Analysis and Dating of Cuneiform Tablets over Three Millennia
- arxiv url: http://arxiv.org/abs/2406.04039v1
- Date: Thu, 6 Jun 2024 13:05:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:59:54.613319
- Title: Shaping History: Advanced Machine Learning Techniques for the Analysis and Dating of Cuneiform Tablets over Three Millennia
- Title(参考訳): 形状履歴:3千年以上にわたるキュニフォームテーブルの分析・日誌解析のための高度な機械学習技術
- Authors: Danielle Kapon, Michael Fire, Shai Gordin,
- Abstract要約: 紀元前4千年紀後期頃の古代メソポタミアに出現したキュニフォーム・タブレットは、人類最古の書記体系の1つである。
伝統的に、これらのタブレットの分析と日付は、形状と書体の主観的な評価に依存している。
デジタル化の最近の進歩は、アクセシビリティと分析能力を高めることによって、キュニフォームの研究に革命をもたらした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cuneiform tablets, emerging in ancient Mesopotamia around the late fourth millennium BCE, represent one of humanity's earliest writing systems. Characterized by wedge-shaped marks on clay tablets, these artifacts provided insight into Mesopotamian civilization across various domains. Traditionally, the analysis and dating of these tablets rely on subjective assessment of shape and writing style, leading to uncertainties in pinpointing their exact temporal origins. Recent advances in digitization have revolutionized the study of cuneiform by enhancing accessibility and analytical capabilities. Our research uniquely focuses on the silhouette of tablets as significant indicators of their historical periods, diverging from most studies that concentrate on textual content. Utilizing an unprecedented dataset of over 94,000 images from the Cuneiform Digital Library Initiative collection, we apply deep learning methods to classify cuneiform tablets, covering over 3,000 years of history. By leveraging statistical, computational techniques, and generative modeling through Variational Auto-Encoders (VAEs), we achieve substantial advancements in the automatic classification of these ancient documents, focusing on the tablets' silhouettes as key predictors. Our classification approach begins with a Decision Tree using height-to-width ratios and culminates with a ResNet50 model, achieving a 61% macro F1-score for tablet silhouettes. Moreover, we introduce novel VAE-powered tools to enhance explainability and enable researchers to explore changes in tablet shapes across different eras and genres. This research contributes to document analysis and diplomatics by demonstrating the value of large-scale data analysis combined with statistical methods. These insights offer valuable tools for historians and epigraphists, enriching our understanding of cuneiform tablets and the cultures that produced them.
- Abstract(参考訳): 紀元前4千年紀後期頃の古代メソポタミアに出現したキュニフォーム・タブレットは、人類最古の書記体系の1つである。
粘土板のくさび形跡によって特徴付けられるこれらの遺物は、様々な領域にわたるメソポタミア文明の洞察を与えた。
伝統的に、これらのタブレットの分析と年代付けは、形状と書体スタイルの主観的な評価に依存しており、正確な時間的起源の特定に不確実性をもたらす。
デジタル化の最近の進歩は、アクセシビリティと分析能力を高めることによって、キュニフォームの研究に革命をもたらした。
我々の研究は、タブレットのシルエットを歴史的に重要な指標とすることに特化しており、テキストコンテンツに焦点を当てたほとんどの研究から逸脱している。
Cuneiform Digital Library Initiativeの収集した94,000以上の画像のデータセットを前代未聞のデータセットを用いて、我々は、3000年以上の歴史をカバーした、クヌーフォームタブレットの分類にディープラーニング手法を適用した。
変分自動エンコーダ(VAE)による統計的・計算的手法および生成的モデリングを活用することにより,これらの古文書の自動分類の大幅な進歩を達成し,タブレットのシルエットを重要な予測器として重視する。
我々の分類法は高さと幅の比を用いた決定木から始まり、ResNet50モデルで決定し、タブレットシルエットの61%のマクロF1スコアを達成する。
さらに,VAEを利用した新しいツールを導入して説明可能性を高め,研究者が時代やジャンルの異なるタブレット形状の変化を探索できるようにする。
本研究は,大規模データ分析と統計的手法を組み合わせた価値を実証することにより,文書分析と外交に寄与する。
これらの洞察は、歴史学者や叙事詩家にとって貴重な道具を提供し、それらを生み出したキュニフォーム・タブレットと文化に対する我々の理解を豊かにしている。
関連論文リスト
- Low-Data Classification of Historical Music Manuscripts: A Few-Shot Learning Approach [0.0]
歴史的写本における記号分類のための自己指導型学習フレームワークを開発した。
この課題を克服するために、ニューラルネットワークによる特徴抽出器を非ラベルデータでトレーニングし、最小限のサンプルで効果的な分類を可能にする。
論文 参考訳(メタデータ) (2024-11-25T14:14:25Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
継続的な学習は、新しい知識を学ぶ際に、かつての知識の破滅的な忘れを克服することを目的としている。
本稿では, PTM を用いた CL の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-29T18:27:52Z) - Deep Aramaic: Towards a Synthetic Data Paradigm Enabling Machine
Learning in Epigraphy [6.281814525187968]
我々の研究は、古アラマ文字に合わせて合成訓練データを生成する革新的な手法を開拓した。
我々のパイプラインは、写真リアリスティックなアラマ文字の碑文を合成し、テクスチュラルな特徴、照明、損傷、拡張を取り入れている。
この包括的なコーパスは、高度に劣化したアラマ文字を分類するために残留ニューラルネットワーク(ResNet)をトレーニングするための堅牢なデータ量を提供する。
論文 参考訳(メタデータ) (2023-10-11T08:47:29Z) - Sampling and Ranking for Digital Ink Generation on a tight computational
budget [69.15275423815461]
トレーニングされたデジタルインク生成モデルの出力品質を最大化する方法について検討する。
我々は、デジタルインク領域におけるその種類に関する最初のアブレーション研究において、複数のサンプリングとランキング手法の効果を使用、比較する。
論文 参考訳(メタデータ) (2023-06-02T09:55:15Z) - DeepScribe: Localization and Classification of Elamite Cuneiform Signs
Via Deep Learning [5.7343926114197075]
1933年、シカゴ大学東洋研究所の考古学者たちは、ペルセポリスの発掘中に数万の土台や破片を発見した。
これらのタブレットの多くは、専門家のキュニフォーム主義者によって痛々しく撮影され、注釈付けされた5000枚以上のアノテートされたタブレットイメージと、10万枚以上のキュニフォームのサインバウンディングボックスからなるリッチなデータセットを提供している。
我々はこのデータセットを活用して、各符号の同一性に関する提案を提供するモジュール型コンピュータビジョンパイプラインであるDeepScribeを開発した。
論文 参考訳(メタデータ) (2023-06-02T05:04:27Z) - Tree-Based Learning on Amperometric Time Series Data Demonstrates High
Accuracy for Classification [0.0]
計算科学におけるデータ駆動型アプローチを用いて,多様なアンペロメトリデータセットに対する分類法を提案する。
非常に高い予測精度(95%以上)を示す。
これは機械学習のスキームを提案し、特にフルアンペロメトリ時系列データに基づく教師あり学習を提案する最初の研究の1つである。
論文 参考訳(メタデータ) (2023-02-06T09:44:53Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - The Effects of Character-Level Data Augmentation on Style-Based Dating
of Historical Manuscripts [5.285396202883411]
本稿では,古写本の年代測定におけるデータ拡張の影響について考察する。
リニアサポートベクトルマシンは、歴史的写本から抽出されたテクスチャおよびグラファイムに基づく特徴に基づいて、k倍のクロスバリデーションで訓練された。
その結果, 付加データを用いたトレーニングモデルは, 累積スコアの1%~3%の古写本の性能を向上させることがわかった。
論文 参考訳(メタデータ) (2022-12-15T15:55:44Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。