PAC-Bayes Compression Bounds So Tight That They Can Explain
Generalization
- URL: http://arxiv.org/abs/2211.13609v1
- Date: Thu, 24 Nov 2022 13:50:16 GMT
- Title: PAC-Bayes Compression Bounds So Tight That They Can Explain
Generalization
- Authors: Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah
Goldblum, Andrew Gordon Wilson
- Abstract summary: We develop a compression approach based on quantizing neural network parameters in a linear subspace.
We find large models can be compressed to a much greater extent than previously known, encapsulating Occam's razor.
- Score: 48.26492774959634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While there has been progress in developing non-vacuous generalization bounds
for deep neural networks, these bounds tend to be uninformative about why deep
learning works. In this paper, we develop a compression approach based on
quantizing neural network parameters in a linear subspace, profoundly improving
on previous results to provide state-of-the-art generalization bounds on a
variety of tasks, including transfer learning. We use these tight bounds to
better understand the role of model size, equivariance, and the implicit biases
of optimization, for generalization in deep learning. Notably, we find large
models can be compressed to a much greater extent than previously known,
encapsulating Occam's razor. We also argue for data-independent bounds in
explaining generalization.
Related papers
- Slicing Mutual Information Generalization Bounds for Neural Networks [14.48773730230054]
We introduce new, tighter information-theoretic generalization bounds tailored for deep learning algorithms.
Our bounds offer significant computational and statistical advantages over standard MI bounds.
We extend our analysis to algorithms whose parameters do not need to exactly lie on random subspaces.
arXiv Detail & Related papers (2024-06-06T13:15:37Z) - Non-Vacuous Generalization Bounds for Large Language Models [78.42762571499061]
We provide the first non-vacuous generalization bounds for pretrained large language models.
We show that larger models have better generalization bounds and are more compressible than smaller models.
arXiv Detail & Related papers (2023-12-28T17:58:42Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime.
We show that the neural networks possess a different limiting kernel which we call textitbias-generalized NTK
We also study various properties of the neural networks with this new kernel.
arXiv Detail & Related papers (2023-01-01T02:11:39Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - Learning Non-Vacuous Generalization Bounds from Optimization [8.294831479902658]
We present a simple yet non-vacuous generalization bound from the optimization perspective.
We achieve this goal by leveraging that the hypothesis set accessed by gradient algorithms is essentially fractal-like.
Numerical studies demonstrate that our approach is able to yield plausible generalization guarantees for modern neural networks.
arXiv Detail & Related papers (2022-06-09T08:59:46Z) - Generalization Through The Lens Of Leave-One-Out Error [22.188535244056016]
We show that the leave-one-out error provides a tractable way to estimate the generalization ability of deep neural networks in the kernel regime.
Our work therefore demonstrates that the leave-one-out error provides a tractable way to estimate the generalization ability of deep neural networks in the kernel regime.
arXiv Detail & Related papers (2022-03-07T14:56:00Z) - Measuring Generalization with Optimal Transport [111.29415509046886]
We develop margin-based generalization bounds, where the margins are normalized with optimal transport costs.
Our bounds robustly predict the generalization error, given training data and network parameters, on large scale datasets.
arXiv Detail & Related papers (2021-06-07T03:04:59Z) - A General Framework for the Practical Disintegration of PAC-Bayesian
Bounds [2.516393111664279]
We introduce new PAC-Bayesian generalization bounds that have the originality to provide disintegrated bounds.
Our bounds are easily optimizable and can be used to design learning algorithms.
arXiv Detail & Related papers (2021-02-17T09:36:46Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
We advance the understanding of the relations between the network's architecture and its generalizability from the compression perspective.
We propose a series of intuitive, data-dependent and easily-measurable properties that tightly characterize the compressibility and generalizability of neural networks.
arXiv Detail & Related papers (2020-01-14T22:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.