論文の概要: Batch-in-Batch: a new adversarial training framework for initial perturbation and sample selection
- arxiv url: http://arxiv.org/abs/2406.04070v1
- Date: Thu, 6 Jun 2024 13:34:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:49:58.794319
- Title: Batch-in-Batch: a new adversarial training framework for initial perturbation and sample selection
- Title(参考訳): Batch-in-Batch:最初の摂動とサンプル選択のための新しい対向学習フレームワーク
- Authors: Yinting Wu, Pai Peng, Bo Cai, Le Li, .,
- Abstract要約: 適応学習法は, 単純な一様分布から, 対向サンプルに対する独立な初期摂動を生成する。
モデルを強化するため,Batch-in-Batchと呼ばれるシンプルで効果的なトレーニングフレームワークを提案する。
BBフレームワーク内でトレーニングされたモデルは、様々な対角的設定において、常に高い対角的精度を有することを示す。
- 参考スコア(独自算出の注目度): 9.241737058291823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial training methods commonly generate independent initial perturbation for adversarial samples from a simple uniform distribution, and obtain the training batch for the classifier without selection. In this work, we propose a simple yet effective training framework called Batch-in-Batch (BB) to enhance models robustness. It involves specifically a joint construction of initial values that could simultaneously generates $m$ sets of perturbations from the original batch set to provide more diversity for adversarial samples; and also includes various sample selection strategies that enable the trained models to have smoother losses and avoid overconfident outputs. Through extensive experiments on three benchmark datasets (CIFAR-10, SVHN, CIFAR-100) with two networks (PreActResNet18 and WideResNet28-10) that are used in both the single-step (Noise-Fast Gradient Sign Method, N-FGSM) and multi-step (Projected Gradient Descent, PGD-10) adversarial training, we show that models trained within the BB framework consistently have higher adversarial accuracy across various adversarial settings, notably achieving over a 13% improvement on the SVHN dataset with an attack radius of 8/255 compared to the N-FGSM baseline model. Furthermore, experimental analysis of the efficiency of both the proposed initial perturbation method and sample selection strategies validates our insights. Finally, we show that our framework is cost-effective in terms of computational resources, even with a relatively large value of $m$.
- Abstract(参考訳): 逆行訓練法は、単純な一様分布から逆行サンプルの独立な初期摂動を一般的に生成し、選択せずに分類器の訓練バッチを得る。
本研究では,モデル堅牢性を高めるため,Batch-in-Batch (BB) と呼ばれるシンプルだが効果的なトレーニングフレームワークを提案する。
具体的には、元のバッチセットから$m$の摂動セットを同時に生成して、敵のサンプルにさらなる多様性を提供するような初期値を共同構築することと、トレーニングされたモデルがよりスムーズな損失を被り、過信な出力を避けるための様々なサンプル選択戦略を含む。
3つのベンチマークデータセット (CIFAR-10, SVHN, CIFAR-100) において, 単一ステップ (Noise-Fast Gradient Sign Method, N-FGSM) とマルチステップ (Projected Gradient Descent, PGD-10) の両方で使用される2つのネットワーク (PreActResNet18, WideResNet28-10) と多段階 (Projected Gradient Descent, PGD-10) の大規模な実験により, BBフレームワークで訓練されたモデルは, N-FGSMベースラインモデルと比較して13%以上改善されていることを示す。
さらに,提案した初期摂動法とサンプル選択法の両方の有効性を実験的に解析し,その妥当性を検証した。
最後に、我々のフレームワークは、比較的大きな$m$であっても、計算資源の観点からコスト効率が良いことを示す。
関連論文リスト
- Debiased Sample Selection for Combating Noisy Labels [24.296451733127956]
サンプル選択におけるバイアス学習のためのnoIse-Tolerant Expert Model (ITEM)を提案する。
具体的には、トレーニングバイアスを軽減するために、複数の専門家と統合した堅牢なネットワークアーキテクチャを設計します。
2つのクラス識別型ミニバッチの混合によるトレーニングにより、モデルが不均衡なトレーニングセットの効果を緩和する。
論文 参考訳(メタデータ) (2024-01-24T10:37:28Z) - Fast Propagation is Better: Accelerating Single-Step Adversarial
Training via Sampling Subnetworks [69.54774045493227]
逆行訓練の欠点は、逆行例の生成によって引き起こされる計算オーバーヘッドである。
モデルの内部構造ブロックを利用して効率を向上させることを提案する。
従来の手法と比較して,本手法はトレーニングコストを削減できるだけでなく,モデルの堅牢性も向上する。
論文 参考訳(メタデータ) (2023-10-24T01:36:20Z) - DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers [21.741026088202126]
そこで本研究では,いくつかのトレーニングサンプルを用いて,事前学習したモデルのロバスト性を証明する新しい手法を提案する。
提案手法は,各トレーニングサンプルに対応するクラス境界および補間標本を生成する。
複数のベンチマークデータセットのベースラインに対する大幅な改善と、課題のあるブラックボックス設定の下でも同様のパフォーマンスを報告しています。
論文 参考訳(メタデータ) (2022-10-17T10:41:18Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
本稿では,従来の対人訓練用データセットのみを用いて,最先端のパフォーマンスを得るために,分岐直交補助訓練(BORT)を提案する。
我々は, CIFAR-10, CIFAR-100, SVHN に対する Epsilon = 8/255 の ell_infty ノルム束縛摂動に対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-08-17T05:42:59Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Sparsity Winning Twice: Better Robust Generalization from More Efficient
Training [94.92954973680914]
スパース対位訓練の代替として, (i) スタティック・スパシティと (ii) ダイナミック・スパシティの2つを紹介した。
いずれの方法も、ロバストな一般化ギャップを大幅に縮小し、ロバストなオーバーフィッティングを緩和する。
我々のアプローチは既存の正規化器と組み合わせて、敵の訓練における新たな最先端の成果を確立することができる。
論文 参考訳(メタデータ) (2022-02-20T15:52:08Z) - Robust Binary Models by Pruning Randomly-initialized Networks [57.03100916030444]
ランダムな二元ネットワークから敵攻撃に対して頑健なモデルを得る方法を提案する。
ランダムな二元ネットワークを切断することにより、ロバストモデルの構造を学習する。
本手法は, 敵攻撃の有無で, 強力な抽選券仮説を立証する。
論文 参考訳(メタデータ) (2022-02-03T00:05:08Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency) というノイズロバスト手法を提案する。
具体的には、対照的な学習方法でネットワークをトレーニングする。
各サンプルの2つの異なるビューからの予測は、クリーンまたは分布不足の「可能性」を推定するために使用されます。
論文 参考訳(メタデータ) (2021-03-24T07:26:07Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
我々は、事前訓練されたモデルからアンサンブルを作成する様々な方法を研究する。
プレトレーニング自体が多様性の優れた源であることが示される。
本稿では,任意の下流データセットに対して,事前学習したモデルのサブセットを効率的に同定する実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-14T07:59:00Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。