論文の概要: Uncovering Limitations of Large Language Models in Information Seeking from Tables
- arxiv url: http://arxiv.org/abs/2406.04113v1
- Date: Thu, 6 Jun 2024 14:30:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:30:04.851922
- Title: Uncovering Limitations of Large Language Models in Information Seeking from Tables
- Title(参考訳): 表から探す情報における大規模言語モデルの限界を明らかにする
- Authors: Chaoxu Pang, Yixuan Cao, Chunhao Yang, Ping Luo,
- Abstract要約: 本稿では,テーブル情報探索(TabIS)のための信頼性の高いベンチマークを紹介する。
テキスト類似度に基づくメトリクスによる信頼性の低い評価を避けるため、TabISはテキスト生成フォーマットではなく、単一選択の質問フォーマット(質問毎に2つのオプション)を採用する。
- 参考スコア(独自算出の注目度): 28.19697259795014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tables are recognized for their high information density and widespread usage, serving as essential sources of information. Seeking information from tables (TIS) is a crucial capability for Large Language Models (LLMs), serving as the foundation of knowledge-based Q&A systems. However, this field presently suffers from an absence of thorough and reliable evaluation. This paper introduces a more reliable benchmark for Table Information Seeking (TabIS). To avoid the unreliable evaluation caused by text similarity-based metrics, TabIS adopts a single-choice question format (with two options per question) instead of a text generation format. We establish an effective pipeline for generating options, ensuring their difficulty and quality. Experiments conducted on 12 LLMs reveal that while the performance of GPT-4-turbo is marginally satisfactory, both other proprietary and open-source models perform inadequately. Further analysis shows that LLMs exhibit a poor understanding of table structures, and struggle to balance between TIS performance and robustness against pseudo-relevant tables (common in retrieval-augmented systems). These findings uncover the limitations and potential challenges of LLMs in seeking information from tables. We release our data and code to facilitate further research in this field.
- Abstract(参考訳): テーブルは高い情報密度と広く使われていることから認識されており、重要な情報源となっている。
表(TIS)から情報を探すことは、Large Language Models(LLM)にとって重要な機能であり、知識に基づくQ&Aシステムの基盤となっている。
しかし、この分野では現在、徹底的で信頼性の高い評価が欠如している。
本稿では,テーブル情報探索(TabIS)のための信頼性の高いベンチマークを紹介する。
テキスト類似度に基づくメトリクスによる信頼性の低い評価を避けるため、TabISはテキスト生成フォーマットではなく、単一選択の質問フォーマット(質問毎に2つのオプション)を採用する。
選択肢を生成し、その困難さと品質を確保するための効果的なパイプラインを構築します。
12個のLLM実験により, GPT-4-turboの性能は極めて良好であるが, 他のプロプライエタリモデルとオープンソースモデルでは不十分であることが判明した。
さらに分析したところ、LLMはテーブル構造に対する理解が乏しく、TIS性能と疑似関連テーブル(検索強化システムでよく見られる)とのバランスがとれないことが示されている。
これらの結果から,表から情報を求めるLLMの限界と潜在的な課題が明らかになった。
私たちはこの分野のさらなる研究を促進するために、データとコードを公開します。
関連論文リスト
- TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG(TableRAG)は、LMベースのテーブル理解用に特別に設計された検索拡張生成(RAG)フレームワークである。
TableRAGは、スキーマとセル検索を組み合わせたクエリ拡張を活用して、LMにそれを提供する前に重要な情報をピンポイントする。
以上の結果から,TableRAGは検索精度が向上し,大規模テーブル理解における最先端性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-07T04:15:02Z) - Generating Tables from the Parametric Knowledge of Language Models [6.316194671269148]
大規模言語モデル(LLM)のパラメトリック知識から表を生成することを検討する。
GPT-3.5, GPT-4, Llama2-13B, Llama2-70Bの表生成能力について検討した。
評価のために、100のキュレートされたウィキペディアテーブルを含む新しいベンチマークWikiTabGenを導入する。
論文 参考訳(メタデータ) (2024-06-16T12:55:55Z) - HiddenTables & PyQTax: A Cooperative Game and Dataset For TableQA to Ensure Scale and Data Privacy Across a Myriad of Taxonomies [9.09415727445941]
本稿では,この課題に対する潜在的な解決法として,HiddenTablesと呼ばれる協調ゲームを提案する。
エージェントがテーブルQAタスクを解く能力を評価するコード生成「r」と「Oracleウィンドウ」の間で「HiddenTables」が再生される。
複雑なクエリを一般化および実行できないLCMの集合性を実証する多種多様なテーブルの集合について明らかな実験を行う。
論文 参考訳(メタデータ) (2024-06-16T04:53:29Z) - KET-QA: A Dataset for Knowledge Enhanced Table Question Answering [63.56707527868466]
本研究では,TableQAの外部知識源として知識ベース(KB)を用いることを提案する。
すべての質問は、答えるテーブルとサブグラフの両方からの情報を統合する必要がある。
我々は,膨大な知識サブグラフから関連する情報を抽出するために,レトリバー・レゾナー構造パイプラインモデルを設計する。
論文 参考訳(メタデータ) (2024-05-13T18:26:32Z) - A Survey of Table Reasoning with Large Language Models [55.2326738851157]
大規模言語モデル(LLM)の使用は、テーブル推論の主流となる。
LLM時代におけるテーブル推論性能の向上に使用される主流技術について分析する。
本研究は,既存手法の改良と実用化の拡充の両面から研究の方向性を示す。
論文 参考訳(メタデータ) (2024-02-13T07:17:52Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
LLaMA2モデル上でパラメータ効率の良い微調整を行う。
我々のアプローチは、テーブル固有の行データを強調することにより、推論情報を入力に注入することである。
FetaQAデータセットとQTSummデータセットの両方で、我々のアプローチは最先端の結果を得た。
論文 参考訳(メタデータ) (2023-11-15T12:02:52Z) - Schema-Driven Information Extraction from Heterogeneous Tables [37.50854811537401]
本稿では、機械学習論文、化学文献、材料科学雑誌、ウェブページの4つの分野のテーブルからなるベンチマークを示す。
我々の実験は、タスク固有のパイプラインやラベルを必要とせずに、驚くほど競争力のあるパフォーマンスが達成できることを示した。
論文 参考訳(メタデータ) (2023-05-23T17:58:10Z) - QTSumm: Query-Focused Summarization over Tabular Data [58.62152746690958]
人々は主に、データ分析を行うか、特定の質問に答えるためにテーブルをコンサルティングします。
そこで本研究では,テキスト生成モデルに人間的な推論を行なわなければならない,クエリ中心のテーブル要約タスクを新たに定義する。
このタスクには,2,934テーブル上の7,111の人間注釈付きクエリ-サマリーペアを含む,QTSummという新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:43:51Z) - Mixed-modality Representation Learning and Pre-training for Joint
Table-and-Text Retrieval in OpenQA [85.17249272519626]
最適化された OpenQA Table-Text Retriever (OTTeR) を提案する。
検索中心の混合モード合成事前学習を行う。
OTTeRはOTT-QAデータセット上でのテーブル・アンド・テキスト検索の性能を大幅に改善する。
論文 参考訳(メタデータ) (2022-10-11T07:04:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。