論文の概要: What Do Language Models Learn in Context? The Structured Task Hypothesis
- arxiv url: http://arxiv.org/abs/2406.04216v2
- Date: Sat, 8 Jun 2024 11:59:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 12:14:33.652805
- Title: What Do Language Models Learn in Context? The Structured Task Hypothesis
- Title(参考訳): 言語モデルは文脈で何を学ぶか? : 構造的タスク仮説
- Authors: Jiaoda Li, Yifan Hou, Mrinmaya Sachan, Ryan Cotterell,
- Abstract要約: 大規模言語モデル(LLM)は、インコンテキスト学習(ICL)と呼ばれるデモで提示されたインコンテキストの例から新しいタスクを学習する
一般的な仮説の一つは、タスク選択によるICLの説明である。
もう一つの一般的な仮説は、ICLはメタ学習の一形態である、すなわち、モデルが事前学習時に学習アルゴリズムを学習し、それを実演に適用する、というものである。
- 参考スコア(独自算出の注目度): 89.65045443150889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) exhibit an intriguing ability to learn a novel task from in-context examples presented in a demonstration, termed in-context learning (ICL). Understandably, a swath of research has been dedicated to uncovering the theories underpinning ICL. One popular hypothesis explains ICL by task selection. LLMs identify the task based on the demonstration and generalize it to the prompt. Another popular hypothesis is that ICL is a form of meta-learning, i.e., the models learn a learning algorithm at pre-training time and apply it to the demonstration. Finally, a third hypothesis argues that LLMs use the demonstration to select a composition of tasks learned during pre-training to perform ICL. In this paper, we empirically explore these three hypotheses that explain LLMs' ability to learn in context with a suite of experiments derived from common text classification tasks. We invalidate the first two hypotheses with counterexamples and provide evidence in support of the last hypothesis. Our results suggest an LLM could learn a novel task in context via composing tasks learned during pre-training.
- Abstract(参考訳): 大規模言語モデル(LLM)は、インコンテキスト学習(ICL)と呼ばれるデモで提示されたインコンテキストの例から新しいタスクを学習する興味深い能力を示す。
当然のことながら、ICLの根底にある理論の解明に多くの研究が費やされている。
一般的な仮説の一つは、タスク選択によるICLの説明である。
LLMはデモに基づいてタスクを特定し、それをプロンプトに一般化する。
もう一つの一般的な仮説は、ICLはメタ学習の一形態である、すなわち、モデルが事前学習時に学習アルゴリズムを学習し、それを実演に適用する、というものである。
最後に、第3の仮説では、LCMは実演を使用してICLを実行するために事前学習中に学んだタスクの合成を選択する。
本稿では,これら3つの仮説を実証的に検証し,LLMが文脈で学習する能力を説明する。
我々は、最初の2つの仮説を反例で無効化し、最後の仮説を支持する証拠を提供する。
この結果から,LLMは事前学習中に学習したタスクを合成することで,文脈において新しいタスクを学習できる可能性が示唆された。
関連論文リスト
- Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcotは、大規模言語モデルを呼び出すためのコンテキスト内学習技術である。
ゼロショットシナリオでは、一貫した正しいステップワイズプロンプトを達成する。
数学的推論とコモンセンス推論の実験を行う。
論文 参考訳(メタデータ) (2023-11-22T17:24:21Z) - Large Language Models can Learn Rules [106.40747309894236]
大規模言語モデル(LLM)を用いた推論のためのルールライブラリを学習するフレームワークであるHtTを提案する。
リレーショナル推論、数値推論、概念学習に関する実験は、HtTが既存のプロンプト法を改善することを示す。
学習されたルールは、異なるモデルや同じ問題の異なる形式にも転送可能である。
論文 参考訳(メタデータ) (2023-10-10T23:07:01Z) - In-Context Explainers: Harnessing LLMs for Explaining Black Box Models [28.396104334980492]
大規模言語モデル(LLM)は、機械翻訳、常識推論、言語理解といった複雑なタスクにおいて、例外的な機能を示している。
このような多様なタスクにおけるLLMの適応性の主要な理由の1つは、インコンテキスト学習(ICL)能力である。
本稿では,LLMのICL機能を利用して,他の予測モデルによる予測を説明する新しい3つの手法,In-Context Explainersを提案する。
論文 参考訳(メタデータ) (2023-10-09T15:31:03Z) - Ambiguity-Aware In-Context Learning with Large Language Models [27.20414960164616]
インコンテキスト学習(ICL)、すなわち、LLMのタスク固有のデモは、タスク固有の微調整を必要とせず、ダウンストリームのゲインにつながった。
そこで本研究では,ICLの優れた実演方法について検討する。
セマンティックに類似したICLのデモンストレーションを選択するだけでなく、テスト例を取り巻く固有のラベルの曖昧さを解決するのに役立つものを選択することは有益である。
論文 参考訳(メタデータ) (2023-09-14T17:48:34Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
大規模言語モデル(LLM)は、伝達学習のパラダイムシフトを開始した。
本稿では,トランスフォーマーに基づく言語モデルが事前学習後に文脈内学習を達成できる理由について検討する。
ICL中、LLMの注意と隠れた特徴は、カーネル回帰の挙動と一致していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T06:45:02Z) - What In-Context Learning "Learns" In-Context: Disentangling Task
Recognition and Task Learning [24.395288160951118]
大規模言語モデル(LLM)は、いくつかのデモでタスクを解くためにコンテキスト内学習(ICL)を利用する。
ICLがデモを利用する2つの方法の特徴付けを行う。
TRのみを用いて非自明な性能を達成でき、TRはより大きなモデルやより多くのデモでさらに改善されないことを示す。
論文 参考訳(メタデータ) (2023-05-16T18:05:19Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z) - Beyond Distributional Hypothesis: Let Language Models Learn Meaning-Text
Correspondence [45.9949173746044]
大規模事前学習言語モデル (PLM) が論理否定特性 (LNP) を満たさないことを示す。
そこで本研究では,意味テキスト対応を直接学習するための新しい中間訓練課題である「意味マッチング」を提案する。
このタスクにより、PLMは語彙意味情報を学習することができる。
論文 参考訳(メタデータ) (2022-05-08T08:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。