Gaussian Splatting with Localized Points Management
- URL: http://arxiv.org/abs/2406.04251v2
- Date: Thu, 13 Jun 2024 16:28:31 GMT
- Title: Gaussian Splatting with Localized Points Management
- Authors: Haosen Yang, Chenhao Zhang, Wenqing Wang, Marco Volino, Adrian Hilton, Li Zhang, Xiatian Zhu,
- Abstract summary: Localized Point Management (LPM) is capable of identifying those error-contributing zones in the highest demand for both point addition and geometry calibration.
LPM applies point densification in the identified zone, whilst resetting the opacity of those points residing in front of these regions so that a new opportunity is created to correct ill-conditioned points.
Notably, LPM improves both vanilla 3DGS and SpaceTimeGS to achieve state-of-the-art rendering quality while retaining real-time speeds.
- Score: 52.009874685460694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point management is a critical component in optimizing 3D Gaussian Splatting (3DGS) models, as the point initiation (e.g., via structure from motion) is distributionally inappropriate. Typically, the Adaptive Density Control (ADC) algorithm is applied, leveraging view-averaged gradient magnitude thresholding for point densification, opacity thresholding for pruning, and regular all-points opacity reset. However, we reveal that this strategy is limited in tackling intricate/special image regions (e.g., transparent) as it is unable to identify all the 3D zones that require point densification, and lacking an appropriate mechanism to handle the ill-conditioned points with negative impacts (occlusion due to false high opacity). To address these limitations, we propose a Localized Point Management (LPM) strategy, capable of identifying those error-contributing zones in the highest demand for both point addition and geometry calibration. Zone identification is achieved by leveraging the underlying multiview geometry constraints, with the guidance of image rendering errors. We apply point densification in the identified zone, whilst resetting the opacity of those points residing in front of these regions so that a new opportunity is created to correct ill-conditioned points. Serving as a versatile plugin, LPM can be seamlessly integrated into existing 3D Gaussian Splatting models. Experimental evaluation across both static 3D and dynamic 4D scenes validate the efficacy of our LPM strategy in boosting a variety of existing 3DGS models both quantitatively and qualitatively. Notably, LPM improves both vanilla 3DGS and SpaceTimeGS to achieve state-of-the-art rendering quality while retaining real-time speeds, outperforming on challenging datasets such as Tanks & Temples and the Neural 3D Video Dataset.
Related papers
- TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training [21.56675189346088]
We introduce Transformation-Invariant Local (TraIL) features and the associated TraIL-Det architecture.
TraIL features exhibit rigid transformation invariance and effectively adapt to variations in point density.
They utilize the inherent isotropic radiation of LiDAR to enhance local representation.
Our method outperforms contemporary self-supervised 3D object detection approaches in terms of mAP on KITTI.
arXiv Detail & Related papers (2024-08-25T17:59:17Z) - DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
We propose a novel post-training weight pruning scheme for 3D object detection.
It determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence.
This framework aims to minimize detection distortion of network output to maximally maintain detection precision.
arXiv Detail & Related papers (2024-07-02T09:33:32Z) - Revising Densification in Gaussian Splatting [23.037676471903215]
We introduce a pixel-error driven formulation for density control in 3DGS, leveraging an auxiliary, per-pixel error function as the criterion for densification.
Our approach leads to consistent quality improvements across a variety of benchmark scenes, without sacrificing the method's efficiency.
arXiv Detail & Related papers (2024-04-09T08:20:37Z) - Experimental 3D super-localization with Laguerre-Gaussian modes [22.67311839285875]
In this work, we rigorously derive the ultimate 3D localization limits of Laguerre-Gaussian (LG) modes and their superposition.
Our findings reveal that a significant portion of the information required for achieving 3D super-localization of LG modes can be obtained through feasible intensity detection.
In the presence of realistic aberration, the algorithm robustly achieves the Cram'er-Rao lower bound.
arXiv Detail & Related papers (2023-12-18T09:19:20Z) - Quadric Representations for LiDAR Odometry, Mapping and Localization [93.24140840537912]
Current LiDAR odometry, mapping and localization methods leverage point-wise representations of 3D scenes.
We propose a novel method of describing scenes using quadric surfaces, which are far more compact representations of 3D objects.
Our method maintains low latency and memory utility while achieving competitive, and even superior, accuracy.
arXiv Detail & Related papers (2023-04-27T13:52:01Z) - On Robust Cross-View Consistency in Self-Supervised Monocular Depth Estimation [56.97699793236174]
We study two kinds of robust cross-view consistency in this paper.
We exploit the temporal coherence in both depth feature space and 3D voxel space for self-supervised monocular depth estimation.
Experimental results on several outdoor benchmarks show that our method outperforms current state-of-the-art techniques.
arXiv Detail & Related papers (2022-09-19T03:46:13Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - Soft Expectation and Deep Maximization for Image Feature Detection [68.8204255655161]
We propose SEDM, an iterative semi-supervised learning process that flips the question and first looks for repeatable 3D points, then trains a detector to localize them in image space.
Our results show that this new model trained using SEDM is able to better localize the underlying 3D points in a scene.
arXiv Detail & Related papers (2021-04-21T00:35:32Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR
Segmentation [81.02742110604161]
State-of-the-art methods for large-scale driving-scene LiDAR segmentation often project the point clouds to 2D space and then process them via 2D convolution.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pat-tern.
Our method achieves the 1st place in the leaderboard of Semantic KITTI and outperforms existing methods on nuScenes with a noticeable margin, about 4%.
arXiv Detail & Related papers (2020-11-19T18:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.