TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training
- URL: http://arxiv.org/abs/2408.13902v1
- Date: Sun, 25 Aug 2024 17:59:17 GMT
- Title: TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training
- Authors: Li Li, Tanqiu Qiao, Hubert P. H. Shum, Toby P. Breckon,
- Abstract summary: We introduce Transformation-Invariant Local (TraIL) features and the associated TraIL-Det architecture.
TraIL features exhibit rigid transformation invariance and effectively adapt to variations in point density.
They utilize the inherent isotropic radiation of LiDAR to enhance local representation.
Our method outperforms contemporary self-supervised 3D object detection approaches in terms of mAP on KITTI.
- Score: 21.56675189346088
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D point clouds are essential for perceiving outdoor scenes, especially within the realm of autonomous driving. Recent advances in 3D LiDAR Object Detection focus primarily on the spatial positioning and distribution of points to ensure accurate detection. However, despite their robust performance in variable conditions, these methods are hindered by their sole reliance on coordinates and point intensity, resulting in inadequate isometric invariance and suboptimal detection outcomes. To tackle this challenge, our work introduces Transformation-Invariant Local (TraIL) features and the associated TraIL-Det architecture. Our TraIL features exhibit rigid transformation invariance and effectively adapt to variations in point density, with a design focus on capturing the localized geometry of neighboring structures. They utilize the inherent isotropic radiation of LiDAR to enhance local representation, improve computational efficiency, and boost detection performance. To effectively process the geometric relations among points within each proposal, we propose a Multi-head self-Attention Encoder (MAE) with asymmetric geometric features to encode high-dimensional TraIL features into manageable representations. Our method outperforms contemporary self-supervised 3D object detection approaches in terms of mAP on KITTI (67.8, 20% label, moderate) and Waymo (68.9, 20% label, moderate) datasets under various label ratios (20%, 50%, and 100%).
Related papers
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - RAPiD-Seg: Range-Aware Pointwise Distance Distribution Networks for 3D LiDAR Segmentation [22.877384781595556]
We introduce Range-Aware Pointwise Distance Distribution (RAPiD) features and the associated RAPiD-Seg architecture.
RAPiD features exhibit rigid transformation invariance and effectively adapt to variations in point density.
We propose a double-nested autoencoder structure with a novel class-aware embedding objective to encode high-dimensional features into manageable voxel-wise embeddings.
arXiv Detail & Related papers (2024-07-14T10:59:34Z) - Gaussian Splatting with Localized Points Management [52.009874685460694]
Localized Point Management (LPM) is capable of identifying those error-contributing zones in the highest demand for both point addition and geometry calibration.
LPM applies point densification in the identified zone, whilst resetting the opacity of those points residing in front of these regions so that a new opportunity is created to correct ill-conditioned points.
Notably, LPM improves both vanilla 3DGS and SpaceTimeGS to achieve state-of-the-art rendering quality while retaining real-time speeds.
arXiv Detail & Related papers (2024-06-06T16:55:07Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - DuEqNet: Dual-Equivariance Network in Outdoor 3D Object Detection for
Autonomous Driving [4.489333751818157]
We propose DuEqNet, which first introduces the concept of equivariance into 3D object detection network.
The dual-equivariant of our model can extract the equivariant features at both local and global levels.
Our model presents higher accuracy on orientation and better prediction efficiency.
arXiv Detail & Related papers (2023-02-27T08:30:02Z) - CL3D: Unsupervised Domain Adaptation for Cross-LiDAR 3D Detection [16.021932740447966]
Domain adaptation for Cross-LiDAR 3D detection is challenging due to the large gap on the raw data representation.
We present an unsupervised domain adaptation method that overcomes above difficulties.
arXiv Detail & Related papers (2022-12-01T03:22:55Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
The intuition of this work is to perceive the geometric inconsistency between the given meshes with the powerful self-attention mechanism.
We propose a novel geometry-contrastive Transformer that has an efficient 3D structured perceiving ability to the global geometric inconsistencies.
We present a latent isometric regularization module together with a novel semi-synthesized dataset for the cross-dataset 3D pose transfer task.
arXiv Detail & Related papers (2021-12-14T13:14:24Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - Shape Prior Non-Uniform Sampling Guided Real-time Stereo 3D Object
Detection [59.765645791588454]
Recently introduced RTS3D builds an efficient 4D Feature-Consistency Embedding space for the intermediate representation of object without depth supervision.
We propose a shape prior non-uniform sampling strategy that performs dense sampling in outer region and sparse sampling in inner region.
Our proposed method has 2.57% improvement on AP3d almost without extra network parameters.
arXiv Detail & Related papers (2021-06-18T09:14:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.