論文の概要: Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models
- arxiv url: http://arxiv.org/abs/2406.04271v1
- Date: Thu, 6 Jun 2024 17:22:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 13:40:27.642535
- Title: Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models
- Title(参考訳): 思考のバッファ:大規模言語モデルによる思考強化推論
- Authors: Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E. Gonzalez, Bin Cui,
- Abstract要約: Buffer of Thoughts (BoT) は、斬新で多目的な思考補足的推論手法である。
そこで我々はメタバッファーを提案し,一連の情報的高レベルの思考を記憶する。
各問題に対して、関連する思考タイミングを検索し、特定の推論構造で適応的にインスタンス化する。
- 参考スコア(独自算出の注目度): 65.48185395952788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Buffer of Thoughts (BoT), a novel and versatile thought-augmented reasoning approach for enhancing accuracy, efficiency and robustness of large language models (LLMs). Specifically, we propose meta-buffer to store a series of informative high-level thoughts, namely thought-template, distilled from the problem-solving processes across various tasks. Then for each problem, we retrieve a relevant thought-template and adaptively instantiate it with specific reasoning structures to conduct efficient reasoning. To guarantee the scalability and stability, we further propose buffer-manager to dynamically update the meta-buffer, thus enhancing the capacity of meta-buffer as more tasks are solved. We conduct extensive experiments on 10 challenging reasoning-intensive tasks, and achieve significant performance improvements over previous SOTA methods: 11% on Game of 24, 20% on Geometric Shapes and 51% on Checkmate-in-One. Further analysis demonstrate the superior generalization ability and model robustness of our BoT, while requiring only 12% of the cost of multi-query prompting methods (e.g., tree/graph of thoughts) on average. Notably, we find that our Llama3-8B+BoT has the potential to surpass Llama3-70B model. Our project is available at: https://github.com/YangLing0818/buffer-of-thought-llm
- Abstract(参考訳): 本稿では,大規模言語モデル (LLM) の精度, 効率, 堅牢性を向上させるために, 思考のバッファ (BoT) を導入する。
具体的には,様々な課題にまたがる問題解決プロセスから抽出した一連の情報的高レベルの思考,すなわち思考的思考を記憶するためのメタバッファを提案する。
そして、各問題に対して、関連する思考タイミングを検索し、それを特定の推論構造で適応的にインスタンス化し、効率的な推論を行う。
スケーラビリティと安定性を保証するため,メタバッファを動的に更新するバッファマネージャを提案する。
従来のSOTA法に比べて11%, 幾何学的形状が20%, チェックメイト・イン・ワンが51%であった。
さらに分析した結果,BoTの一般化能力とモデルロバスト性を向上すると同時に,平均的なマルチクエリプロンプト手法(例えば,ツリー/グラフ)のコストの12%しか必要としないことがわかった。
特に、我々のLlama3-8B+BoTはLlama3-70Bモデルを上回る可能性がある。
私たちのプロジェクトは、https://github.com/YangLing0818/buffer-of- Thought-llmで利用可能です。
関連論文リスト
- Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths [69.39559168050923]
本稿では,多様な経路から学習の推論と探索を可能にするReasoning Paths Optimization (RPO)を紹介する。
提案手法は,各推論ステップにおいて好意的な分岐を奨励し,好ましくない分岐を罰し,モデル全体の問題解決性能を高める。
我々は,数語問題や理科ベースの試験問題など,多段階の推論タスクに焦点をあてる。
論文 参考訳(メタデータ) (2024-10-07T06:37:25Z) - Can Github issues be solved with Tree Of Thoughts? [0.0]
本研究は,LLMの意思決定能力と問題解決能力を高めるための言語モデル推論フレームワークであるTree of Thoughts(ToT)の導入について紹介する。
私たちは、SWE-benchのインスタンスに含まれるGithubの問題に対処するために、ToTを実験的にデプロイします。
論文 参考訳(メタデータ) (2024-05-20T11:05:56Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
推論タスクでは、小さなエラーでも不正確な結果にカスケードすることができる。
入力の摂動に頼らず、外部リソースの導入を避ける手法を開発した。
私たちのトレーニングアプローチでは、思考の連鎖の中で特定のトークンをランダムにマスクします。
論文 参考訳(メタデータ) (2024-03-04T16:21:54Z) - Uncertainty of Thoughts: Uncertainty-Aware Planning Enhances Information Seeking in Large Language Models [73.79091519226026]
Uncertainty of Thoughts (UoT) は、大きな言語モデルを拡張するアルゴリズムであり、効果的な質問をすることで積極的に情報を求めることができる。
医療診断、トラブルシューティング、および20の質問ゲームに関する実験において、UoTは、タスク完了の成功率において平均38.1%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-02-05T18:28:44Z) - Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization [37.339567743948955]
本稿では,BOの限界に対処するための新しいベイズ最適化フレームワークを提案する。
我々の重要な貢献は、高度にスケーラブルでサンプルベースの取得機能であり、非支配的な目的のソートを実行する。
我々は,ベイズ型ニューラルネットワークサロゲートと組み合わせることで,最小限の反復数でデータ集約環境に有効であることを示す。
論文 参考訳(メタデータ) (2023-06-01T19:10:57Z) - Tree of Thoughts: Deliberate Problem Solving with Large Language Models [52.31950122881687]
言語モデル推論のための新しいフレームワーク、Tree of Thoughts (ToT)を紹介します。
ToTは、言語モデルを促進するために人気のChain of Thoughtアプローチを一般化する。
実験の結果,ToTは言語モデルの問題解決能力を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-05-17T23:16:17Z) - Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them [108.54545521369688]
我々は,BIG-Bench Hard (BBH) と呼ばれる,BIG-Benchタスクに挑戦する23のスイートに焦点を当てる。
BBHタスクへのチェーン・オブ・シント(CoT)の適用により、PaLMは23タスクのうち10タスクにおいて平均的な人間レータ性能を上回り、Codexは23タスクのうち17タスクにおいて平均的な人間レータ性能を上回ります。
論文 参考訳(メタデータ) (2022-10-17T17:08:26Z) - MBORE: Multi-objective Bayesian Optimisation by Density-Ratio Estimation [0.01652719262940403]
最適化問題は、しばしば計算的に、あるいは金銭的にコストがかかる複数の矛盾する目標を持つ。
単代理ベイズ最適化(BO)は、そのようなブラックボックス関数を最適化するための一般的なモデルベースのアプローチである。
BOREによるBOの先行研究を多目的設定に拡張する。
論文 参考訳(メタデータ) (2022-03-31T09:27:59Z) - Scalable Combinatorial Bayesian Optimization with Tractable Statistical
models [44.25245545568633]
緩和空間上のブラックボックス関数(集合、列、木、グラフなど)を最適化する問題について検討する。
サブモジュール緩和の最近の進歩に基づき,BOCSモデルにおけるAFO問題のスケーラビリティと精度向上を目標として,Parametrized Submodular (PSR) のアプローチを検討する。
多様なベンチマーク問題に対する実験では、BOCSモデルに対するPSRによる大幅な改善が示されている。
論文 参考訳(メタデータ) (2020-08-18T22:56:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。