Neural Networks Assisted Metropolis-Hastings for Bayesian Estimation of Critical Exponent on Elliptic Black Hole Solution in 4D Using Quantum Perturbation Theory
- URL: http://arxiv.org/abs/2406.04310v3
- Date: Thu, 22 Aug 2024 09:06:55 GMT
- Title: Neural Networks Assisted Metropolis-Hastings for Bayesian Estimation of Critical Exponent on Elliptic Black Hole Solution in 4D Using Quantum Perturbation Theory
- Authors: Armin Hatefi, Ehsan Hatefi, Roberto J. Lopez-Sastre,
- Abstract summary: We study quantum perturbation theory for the four-dimensional Einstein-axion-dilaton system of the elliptic class of $textSL (2,mathbbR)$ transformations.
We develop a novel artificial neural network-assisted Metropolis-Hastings algorithm based on quantum perturbation theory to find the distribution of the critical exponent.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is well-known that the critical gravitational collapse produces continuous self-similar solutions characterized by the Choptuik critical exponent, $\gamma$. We examine the solutions in the domains of the linear perturbation equations, considering the numerical measurement errors. Specifically, we study quantum perturbation theory for the four-dimensional Einstein-axion-dilaton system of the elliptic class of $\text{SL}(2,\mathbb{R})$ transformations. We develop a novel artificial neural network-assisted Metropolis-Hastings algorithm based on quantum perturbation theory to find the distribution of the critical exponent in a Bayesian framework. Unlike existing methods, this new probabilistic approach identifies the available deterministic solution and explores the range of physically distinguishable critical exponents that may arise due to numerical measurement errors.
Related papers
- A variational quantum algorithm by Bayesian Inference with von Mises-Fisher distribution [16.974415282194027]
We present a novel approach that employs Bayesian inference principles together with von Mises-Fisher distribution.
We theoretically demonstrate the new algorithm's capability in identifying the ground state with certain for various random Hamiltonian matrices.
arXiv Detail & Related papers (2024-10-04T03:57:19Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Addressing the Non-perturbative Regime of the Quantum Anharmonic Oscillator by Physics-Informed Neural Networks [0.9374652839580183]
In quantum realm, such approach paves the way to a novel approach to solve the Schroedinger equation for non-integrable systems.
We investigate systems with real and imaginary frequency, laying the foundation for novel numerical methods to tackle problems emerging in quantum field theory.
arXiv Detail & Related papers (2024-05-22T08:34:52Z) - Expressibility-induced Concentration of Quantum Neural Tangent Kernels [4.561685127984694]
We study the connections between the trainability and expressibility of quantum tangent kernel models.
For global loss functions, we rigorously prove that high expressibility of both the global and local quantum encodings can lead to exponential concentration of quantum tangent kernel values to zero.
Our discoveries unveil a pivotal characteristic of quantum neural tangent kernels, offering valuable insights for the design of wide quantum variational circuit models.
arXiv Detail & Related papers (2023-11-08T19:00:01Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - First principles physics-informed neural network for quantum
wavefunctions and eigenvalue surfaces [0.0]
We propose a neural network to discover parametric eigenvalue and eigenfunction surfaces of quantum systems.
We apply our method to solve the hydrogen molecular ion.
arXiv Detail & Related papers (2022-11-08T23:22:42Z) - Learning ground states of quantum Hamiltonians with graph networks [6.024776891570197]
Solving for the lowest energy eigenstate of the many-body Schrodinger equation is a cornerstone problem.
Variational methods approach this problem by searching for the best approximation within a lower-dimensional variational manifold.
We use graph neural networks to define a structured variational manifold and optimize its parameters to find high quality approximations.
arXiv Detail & Related papers (2021-10-12T22:56:16Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.