論文の概要: ShareGPT4Video: Improving Video Understanding and Generation with Better Captions
- arxiv url: http://arxiv.org/abs/2406.04325v1
- Date: Thu, 6 Jun 2024 17:58:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 13:20:49.950710
- Title: ShareGPT4Video: Improving Video Understanding and Generation with Better Captions
- Title(参考訳): ShareGPT4Video: キャプションの改善によるビデオの理解と生成の改善
- Authors: Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Bin Lin, Zhenyu Tang, Li Yuan, Yu Qiao, Dahua Lin, Feng Zhao, Jiaqi Wang,
- Abstract要約: 本稿では,大容量ビデオ言語モデル(LVLM)の映像理解と,高密度かつ高精度なキャプションによるテキスト・ツー・ビデオモデル(T2VM)のビデオ生成を目的としたShareGPT4Videoシリーズを紹介する。
ShareGPT4Video, 40K GPT4V Annotated dense Casts of video with various lengths and sources, developed through carefully designed data filtering and annotating strategy。
さらに,任意の動画に対して高品質なキャプションを効率よく生成できる優れたキャプションキャプタであるShareCaptioner-Videoを開発した。
- 参考スコア(独自算出の注目度): 93.29360532845062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the ShareGPT4Video series, aiming to facilitate the video understanding of large video-language models (LVLMs) and the video generation of text-to-video models (T2VMs) via dense and precise captions. The series comprises: 1) ShareGPT4Video, 40K GPT4V annotated dense captions of videos with various lengths and sources, developed through carefully designed data filtering and annotating strategy. 2) ShareCaptioner-Video, an efficient and capable captioning model for arbitrary videos, with 4.8M high-quality aesthetic videos annotated by it. 3) ShareGPT4Video-8B, a simple yet superb LVLM that reached SOTA performance on three advancing video benchmarks. To achieve this, taking aside the non-scalable costly human annotators, we find using GPT4V to caption video with a naive multi-frame or frame-concatenation input strategy leads to less detailed and sometimes temporal-confused results. We argue the challenge of designing a high-quality video captioning strategy lies in three aspects: 1) Inter-frame precise temporal change understanding. 2) Intra-frame detailed content description. 3) Frame-number scalability for arbitrary-length videos. To this end, we meticulously designed a differential video captioning strategy, which is stable, scalable, and efficient for generating captions for videos with arbitrary resolution, aspect ratios, and length. Based on it, we construct ShareGPT4Video, which contains 40K high-quality videos spanning a wide range of categories, and the resulting captions encompass rich world knowledge, object attributes, camera movements, and crucially, detailed and precise temporal descriptions of events. Based on ShareGPT4Video, we further develop ShareCaptioner-Video, a superior captioner capable of efficiently generating high-quality captions for arbitrary videos...
- Abstract(参考訳): 本稿では,大容量ビデオ言語モデル(LVLM)の映像理解と,高密度かつ高精度なキャプションによるテキスト・ツー・ビデオモデル(T2VM)のビデオ生成を目的としたShareGPT4Videoシリーズを紹介する。
シリーズは以下の通り。
1)ShareGPT4Video, 40K GPT4V Annotated dense Casts of video with various lengths and sources, developed through carefully designed data filtering and annotating strategy。
2)ShareCaptioner-Videoは、任意のビデオのための効率的で有能なキャプションモデルで、4.8Mの高品質な美的ビデオに注釈付けされている。
3)ShareGPT4Video-8Bは,3つのプログレッシブビデオベンチマークでSOTA性能に到達した,シンプルだが超高機能なLVLMである。
これを実現するため、費用がかからない人用アノテータを別として、GPT4Vを用いて、単純な多フレームまたはフレーム結合入力戦略で動画のキャプションを行うと、詳細性が低下し、時々時間的に強調される結果が生じる。
高品質なビデオキャプション戦略を設計する上での課題は3つの側面にある,と我々は主張する。
1)フレーム間の正確な時間的変化の理解。
2) フレーム内詳細内容説明。
3)任意長ビデオのフレーム数拡張性。
そこで我々は, 任意の解像度, アスペクト比, 長さの動画のキャプションを生成するための, 安定した, スケーラブルで, 効率的な差分キャプション戦略を慎重に設計した。
そこで我々は,多種多様なカテゴリにまたがる40Kの高品質ビデオを含むShareGPT4Videoを構築し,その結果のキャプションには,豊富な世界知識,オブジェクト属性,カメラの動き,重要な,詳細かつ正確なイベントの時間的記述が含まれている。
ShareGPT4VideoをベースとしたShareCaptioner-Videoは、任意のビデオのための高品質なキャプションを効率よく生成できる優れたキャプタだ。
関連論文リスト
- AuroraCap: Efficient, Performant Video Detailed Captioning and a New Benchmark [89.73538448786405]
大規模なマルチモーダルモデルに基づくビデオキャプタであるAuroraCapを提案する。
トークンマージ戦略を実装し、入力されたビジュアルトークンの数を減らす。
AuroraCapは、様々なビデオおよび画像キャプションベンチマークで優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-10-04T00:13:54Z) - CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer [55.515836117658985]
拡散トランスを用いた大規模テキスト・ビデオ生成モデルであるCogVideoXを提案する。
フレームレートは16fps、解像度は768×1360ピクセル。
論文 参考訳(メタデータ) (2024-08-12T11:47:11Z) - VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding [15.959757105308238]
ビデオLMMは、視覚入力を処理するために、画像エンコーダまたはビデオエンコーダに依存しており、それぞれに独自の制限がある。
本稿では,映像エンコーダと映像エンコーダの相補的利点(大域的時間文脈モデリング)を組み合わせたビデオGPT+を紹介する。
本稿では,VCGBench,MVBench,Zero-shotなど,複数のビデオベンチマークのパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-06-13T17:59:59Z) - Vript: A Video Is Worth Thousands of Words [54.815686588378156]
Vriptは12Kの高解像度ビデオの注釈付きコーパスで、420Kのクリップで詳細な、密度の高い、スクリプトのようなキャプションを提供する。
各クリップには145ワードのキャプションがあり、ほとんどのビデオテキストデータセットの10倍以上の長さである。
Vriptは、長いビデオのための高密度で詳細なキャプションをエンドツーエンドに生成できる強力なモデルである。
論文 参考訳(メタデータ) (2024-06-10T06:17:55Z) - VideoPrism: A Foundational Visual Encoder for Video Understanding [90.01845485201746]
VideoPrismは、単一の凍結モデルで多様なビデオ理解タスクに取り組む汎用ビデオエンコーダである。
我々は,36Mの高品質ビデオキャプチャ対と582Mの動画クリップを含む異種コーパス上で,VoicePrismを事前訓練した。
我々は、Webビデオ質問応答から科学用CVまで、ビデオ理解タスクの4つのグループでビデオPrismを広範囲にテストし、33の動画理解ベンチマークのうち31で最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-02-20T18:29:49Z) - Cap4Video: What Can Auxiliary Captions Do for Text-Video Retrieval? [131.300931102986]
現実のシナリオでは、オンラインビデオにはタイトルやタグ、サブタイトルなど、関連するテキスト情報が添付されることが多い。
そこで本研究では,ゼロショットビデオキャプションを用いて動画から関連キャプションを直接生成する手法を提案する。
我々は,我々のアプローチの有効性を実証する包括的アブレーション研究を行っている。
論文 参考訳(メタデータ) (2022-12-31T11:50:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。