Combining Graph Neural Network and Mamba to Capture Local and Global Tissue Spatial Relationships in Whole Slide Images
- URL: http://arxiv.org/abs/2406.04377v1
- Date: Wed, 5 Jun 2024 22:06:57 GMT
- Title: Combining Graph Neural Network and Mamba to Capture Local and Global Tissue Spatial Relationships in Whole Slide Images
- Authors: Ruiwen Ding, Kha-Dinh Luong, Erika Rodriguez, Ana Cristina Araujo Lemos da Silva, William Hsu,
- Abstract summary: In computational pathology, extracting spatial features from gigapixel whole slide images (WSIs) is a fundamental task.
We introduce a model that combines a message-passing graph neural network (GNN) with a state space model (Mamba) to capture both local and global spatial relationships.
The model's effectiveness was demonstrated in predicting progression-free survival among patients with early-stage lung adenocarcinomas.
- Score: 1.1813933389519358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In computational pathology, extracting spatial features from gigapixel whole slide images (WSIs) is a fundamental task, but due to their large size, WSIs are typically segmented into smaller tiles. A critical aspect of this analysis is aggregating information from these tiles to make predictions at the WSI level. We introduce a model that combines a message-passing graph neural network (GNN) with a state space model (Mamba) to capture both local and global spatial relationships among the tiles in WSIs. The model's effectiveness was demonstrated in predicting progression-free survival among patients with early-stage lung adenocarcinomas (LUAD). We compared the model with other state-of-the-art methods for tile-level information aggregation in WSIs, including tile-level information summary statistics-based aggregation, multiple instance learning (MIL)-based aggregation, GNN-based aggregation, and GNN-transformer-based aggregation. Additional experiments showed the impact of different types of node features and different tile sampling strategies on the model performance. This work can be easily extended to any WSI-based analysis. Code: https://github.com/rina-ding/gat-mamba.
Related papers
- SAM-MIL: A Spatial Contextual Aware Multiple Instance Learning Approach for Whole Slide Image Classification [9.69491390062406]
We propose a novel MIL framework, named SAM-MIL, that emphasizes spatial contextual awareness and explicitly incorporates spatial context.
Our approach includes the design of group feature extraction based on spatial context and a SAM-Guided Group Masking strategy.
Experimental results on the CAMELYON-16 and TCGA Lung Cancer datasets demonstrate that our proposed SAM-MIL model outperforms existing mainstream methods in WSIs classification.
arXiv Detail & Related papers (2024-07-25T01:12:48Z) - Dynamic Graph Representation with Knowledge-aware Attention for
Histopathology Whole Slide Image Analysis [11.353826466710398]
We propose a novel dynamic graph representation algorithm that conceptualizes WSIs as a form of the knowledge graph structure.
Specifically, we dynamically construct neighbors and directed edge embeddings based on the head and tail relationships between instances.
Our end-to-end graph representation learning approach has outperformed the state-of-the-art WSI analysis methods on three TCGA benchmark datasets and in-house test sets.
arXiv Detail & Related papers (2024-03-12T14:58:51Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
We propose a framework named MamMIL for WSI analysis.
We represent each WSI as an undirected graph.
To address the problem that Mamba can only process 1D sequences, we propose a topology-aware scanning mechanism.
arXiv Detail & Related papers (2024-03-08T09:02:13Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
We propose a novel graph-based framework to leverage the inter-relationships among different types of nuclei for WSI analysis.
Specifically, we formulate the WSI as a heterogeneous graph with "nucleus-type" attribute to each node and a semantic attribute similarity to each edge.
Our framework outperforms the state-of-the-art methods with considerable margins on various tasks.
arXiv Detail & Related papers (2023-07-09T14:43:40Z) - Coupling Global Context and Local Contents for Weakly-Supervised
Semantic Segmentation [54.419401869108846]
We propose a single-stage WeaklySupervised Semantic (WSSS) model with only the image-level class label supervisions.
A flexible context aggregation module is proposed to capture the global object context in different granular spaces.
A semantically consistent feature fusion module is proposed in a bottom-up parameter-learnable fashion to aggregate the fine-grained local contents.
arXiv Detail & Related papers (2023-04-18T15:29:23Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - An End-to-End Breast Tumour Classification Model Using Context-Based
Patch Modelling- A BiLSTM Approach for Image Classification [19.594639581421422]
We have tried to integrate this relationship along with feature-based correlation among the extracted patches from the particular tumorous region.
We trained and tested our model on two datasets, microscopy images and WSI tumour regions.
We found out that BiLSTMs with CNN features have performed much better in modelling patches into an end-to-end Image classification network.
arXiv Detail & Related papers (2021-06-05T10:43:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.