論文の概要: Negative Feedback for Music Personalization
- arxiv url: http://arxiv.org/abs/2406.04488v1
- Date: Thu, 6 Jun 2024 20:22:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 18:07:23.095607
- Title: Negative Feedback for Music Personalization
- Title(参考訳): 音楽パーソナライズのための負のフィードバック
- Authors: M. Jeffrey Mei, Oliver Bembom, Andreas F. Ehmann,
- Abstract要約: ユーザシーケンスへの入力と、インターネットラジオの次世代レコメンデータシステムのトレーニングのための負のターゲットの両方として、真の負のフィードバックを使用することの利点を示す。
トレーニング中に明示的な負のサンプルを使用することは、トレーニング時間を60%削減し、テスト精度を6%向上させる。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Next-item recommender systems are often trained using only positive feedback with randomly-sampled negative feedback. We show the benefits of using real negative feedback both as inputs into the user sequence and also as negative targets for training a next-song recommender system for internet radio. In particular, using explicit negative samples during training helps reduce training time by ~60% while also improving test accuracy by ~6%; adding user skips as additional inputs also can considerably increase user coverage alongside slightly improving accuracy. We test the impact of using a large number of random negative samples to capture a 'harder' one and find that the test accuracy increases with more randomly-sampled negatives, but only to a point. Too many random negatives leads to false negatives that limits the lift, which is still lower than if using true negative feedback. We also find that the test accuracy is fairly robust with respect to the proportion of different feedback types, and compare the learned embeddings for different feedback types.
- Abstract(参考訳): Next-itemレコメンダシステムは、ランダムにサンプリングされた負のフィードバックを持つ正のフィードバックのみを使用してトレーニングされることが多い。
ユーザシーケンスへの入力として、また、インターネットラジオの次世代レコメンデーションシステムのトレーニングのための負のターゲットとして、真の負のフィードバックを使用することの利点を示す。
特に、トレーニング中に明示的な負のサンプルを使用することで、トレーニング時間を~60%削減し、テスト精度を~6%向上させることができる。
我々は、多数のランダムな負のサンプルを用いて「ハード」なサンプルを捕捉し、よりランダムにサンプリングされた負の値でテスト精度が上昇するが、ポイントにしか達しないことを示した。
ランダムな負の数が多すぎると、リフトを制限する偽陰性が発生するが、これは真の負のフィードバックを使用する場合よりも依然として低い。
また、テスト精度は、異なるフィードバックタイプの割合に対してかなり堅牢であり、異なるフィードバックタイプに対する学習された埋め込みと比較する。
関連論文リスト
- Contrastive Learning with Negative Sampling Correction [52.990001829393506]
PUCL(Positive-Unlabeled Contrastive Learning)という新しいコントラスト学習手法を提案する。
PUCLは生成した負のサンプルをラベルのないサンプルとして扱い、正のサンプルからの情報を用いて、対照的な損失のバイアスを補正する。
PUCLは一般的なコントラスト学習問題に適用でき、様々な画像やグラフの分類タスクにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-01-13T11:18:18Z) - Learning from Negative User Feedback and Measuring Responsiveness for
Sequential Recommenders [13.762960304406016]
シーケンシャルレコメンデータのトレーニング目標に、明示的かつ暗黙的なネガティブなユーザフィードバックを導入する。
大規模産業レコメンデーションシステムを用いた実演実験により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-08-23T17:16:07Z) - Your Negative May not Be True Negative: Boosting Image-Text Matching
with False Negative Elimination [62.18768931714238]
提案手法は, サンプリングによる新規な偽陰性除去 (FNE) 戦略である。
その結果,提案した偽陰性除去戦略の優位性が示された。
論文 参考訳(メタデータ) (2023-08-08T16:31:43Z) - Better Sampling of Negatives for Distantly Supervised Named Entity
Recognition [39.264878763160766]
本稿では, 正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正の正
提案手法は,4つの遠隔教師付きNERデータセットに対して一貫した性能向上を実現する。
論文 参考訳(メタデータ) (2023-05-22T15:35:39Z) - SimANS: Simple Ambiguous Negatives Sampling for Dense Text Retrieval [126.22182758461244]
評価結果によると, 正の値にランク付けされた負の値は, 一般的にはより情報的であり, 偽陰の可能性が低いことがわかった。
そこで本研究では,よりあいまいな負のサンプリングに新しいサンプリング確率分布を組み込んだ,単純な曖昧な負のサンプリング手法であるSimANSを提案する。
論文 参考訳(メタデータ) (2022-10-21T07:18:05Z) - Generating Negative Samples for Sequential Recommendation [83.60655196391855]
逐次レコメンデーション(SR)のための負のサンプル(イテム)を生成することを提案する。
アイテムに対する現在のSRモデルの学習されたユーザの好みに基づいて、各タイムステップで負の項目をサンプリングする。
4つの公開データセットの実験は、SRに高品質な負のサンプルを提供することの重要性を検証する。
論文 参考訳(メタデータ) (2022-08-07T05:44:13Z) - Negative Sampling for Recommendation [7.758275614033198]
高品質なネガティブなインスタンスを効果的にサンプルする方法は、レコメンデーションモデルを適切にトレーニングするために重要である。
我々は、高品質なネガティブは、テクスチュンフォームネスとテクスチュンバイアスネスの両方であるべきだと論じる。
論文 参考訳(メタデータ) (2022-04-02T09:50:19Z) - Rethinking InfoNCE: How Many Negative Samples Do You Need? [54.146208195806636]
半定量的理論フレームワークを用いて, InfoNCE に最適化された負のサンプル数について検討した。
トレーニングの有効性関数を最大化する$K$値を用いて,最適負サンプリング比を推定する。
論文 参考訳(メタデータ) (2021-05-27T08:38:29Z) - AdCo: Adversarial Contrast for Efficient Learning of Unsupervised
Representations from Self-Trained Negative Adversaries [55.059844800514774]
本稿では,正の問合せに対して識別が難しい表現を訓練するためのAdCoモデルを提案する。
実験により,AdCoモデルが優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-11-17T05:45:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。