論文の概要: FOX: Coverage-guided Fuzzing as Online Stochastic Control
- arxiv url: http://arxiv.org/abs/2406.04517v1
- Date: Thu, 6 Jun 2024 21:21:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 17:57:38.801722
- Title: FOX: Coverage-guided Fuzzing as Online Stochastic Control
- Title(参考訳): FOX: オンライン確率制御のためのカバーガイドファジィ
- Authors: Dongdong She, Adam Storek, Yuchong Xie, Seoyoung Kweon, Prashast Srivastava, Suman Jana,
- Abstract要約: ファジィング(fuzzing)は、ターゲットプログラムに対してランダムなテスト入力を生成してソフトウェア脆弱性を発見する効果的な手法である。
本稿では、スケジューラとミュータレータコンポーネントに焦点をあて、既存のカバレッジ誘導ファザの限界に対処する。
本稿では、制御理論アプローチの概念実証実装であるFOXについて、業界標準ファザと比較する。
- 参考スコア(独自算出の注目度): 13.3158115776899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fuzzing is an effective technique for discovering software vulnerabilities by generating random test inputs and executing them against the target program. However, fuzzing large and complex programs remains challenging due to difficulties in uncovering deeply hidden vulnerabilities. This paper addresses the limitations of existing coverage-guided fuzzers, focusing on the scheduler and mutator components. Existing schedulers suffer from information sparsity and the inability to handle fine-grained feedback metrics. The mutators are agnostic of target program branches, leading to wasted computation and slower coverage exploration. To overcome these issues, we propose an end-to-end online stochastic control formulation for coverage-guided fuzzing. Our approach incorporates a novel scheduler and custom mutator that can adapt to branch logic, maximizing aggregate edge coverage achieved over multiple stages. The scheduler utilizes fine-grained branch distance measures to identify frontier branches, where new coverage is likely to be achieved. The mutator leverages branch distance information to perform efficient and targeted seed mutations, leading to robust progress with minimal overhead. We present FOX, a proof-of-concept implementation of our control-theoretic approach, and compare it to industry-standard coverage-guided fuzzers. 6 CPU-years of extensive evaluations on the FuzzBench dataset and complex real-world programs (a total of 38 test programs) demonstrate that FOX outperforms existing state-of-the-art fuzzers, achieving average coverage improvements up to 26.45% in real-world standalone programs and 6.59% in FuzzBench programs over the state-of-the-art AFL++. In addition, it uncovers 20 unique bugs in popular real-world applications including eight that are previously unknown, showcasing real-world security impact.
- Abstract(参考訳): ファジィングは、ランダムなテスト入力を生成し、ターゲットプログラムに対して実行することで、ソフトウェアの脆弱性を発見する効果的な手法である。
しかし、大規模で複雑なプログラムをファジィングすることは、深く隠された脆弱性を明らかにするのが困難であるため、依然として困難である。
本稿では、スケジューラとミュータレータコンポーネントに焦点をあて、既存のカバレッジ誘導ファザの限界に対処する。
既存のスケジューラは、情報のばらつきと、きめ細かいフィードバックのメトリクスを扱うことができない。
ミュータはターゲットのプログラムブランチを知らないため、時間の無駄な計算とカバレッジ探索が遅くなる。
これらの問題を克服するために、我々は、カバー範囲誘導ファジィングのためのエンドツーエンドのオンライン確率制御式を提案する。
提案手法では,分岐論理に適応可能な新しいスケジューラとカスタムミュータを組み込んで,複数のステージで達成した集合エッジカバレッジを最大化する。
スケジューラは、細粒度の分岐距離測定を使用して、新しいカバレッジが達成される可能性のあるフロンティアブランチを特定する。
ミューテーターは分岐距離情報を利用して効率よく標的となる種子の突然変異を実行し、最小限のオーバーヘッドで堅牢な進行をもたらす。
本稿では、制御理論アプローチの概念実証実装であるFOXについて、業界標準のカバレッジ誘導ファザと比較する。
6CPU年にわたるFuzzBenchデータセットと複雑な実世界のプログラム(合計38の試験プログラム)に関する広範な評価の結果、FOXは既存の最先端のファッジャを上回り、現実のスタンドアロンプログラムでは26.45%、最先端のAFL++では6.59%まで平均的なカバレッジ向上を達成した。
さらに、以前は知られていなかった8つを含む、人気のある現実世界のアプリケーションで20のユニークなバグを発見し、現実世界のセキュリティへの影響を示している。
関連論文リスト
- FuzzCoder: Byte-level Fuzzing Test via Large Language Model [46.18191648883695]
我々は,攻撃を成功させることで,入力ファイルのパターンを学習するために,微調整された大言語モデル(FuzzCoder)を採用することを提案する。
FuzzCoderは、プログラムの異常な動作を引き起こすために、入力ファイル内の突然変異位置と戦略位置を予測することができる。
論文 参考訳(メタデータ) (2024-09-03T14:40:31Z) - Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
継続的なテスト時間適応は、訓練済みのソースモデルを適用して、教師なしのターゲットドメインを継続的に変更する。
我々は、オンライン環境、教師なしの自然、エラー蓄積や破滅的な忘れのリスクなど、このタスクの課題を分析する。
教師なしシングルパスデータストリームから重要サンプルを高い確実性で識別・集約する不確実性を考慮したバッファリング手法を提案する。
論文 参考訳(メタデータ) (2024-07-12T15:48:40Z) - Beyond Random Inputs: A Novel ML-Based Hardware Fuzzing [16.22481369547266]
ハードウェアファジィングは、現代のプロセッサのような大規模設計におけるセキュリティ脆弱性の探索と検出に有効なアプローチである。
この課題に対処するために,MLベースのハードウェアファザであるChatFuzzを提案する。
ChatFuzzは、最先端のファズーと比較して、わずか52分で75%の条件カバレッジ率を達成する。
論文 参考訳(メタデータ) (2024-04-10T09:28:54Z) - CovRL: Fuzzing JavaScript Engines with Coverage-Guided Reinforcement
Learning for LLM-based Mutation [2.5864634852960444]
本稿では,大規模言語モデル(LLM)とカバレッジフィードバックからの強化学習を組み合わせた,CovRL(Coverage-guided Reinforcement Learning)と呼ばれる新しい手法を提案する。
CovRL-Fuzzは、39の既知の脆弱性と11のCVEを含む、最新のJavaScriptエンジンにおける48の実際のセキュリティ関連バグを特定している。
論文 参考訳(メタデータ) (2024-02-19T15:30:40Z) - Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler [8.447499888458633]
Fuzzingは高度にスケール可能なソフトウェアテスト技術であり、変更された入力で実行することでターゲットプログラムのバグを明らかにする。
マルチアームバンディット理論に基づくシードスケジューラであるT-Schedulerを提案する。
ファジィリングの35 CPU yr 以上の T-Scheduler を評価し,11 の最先端スケジューラと比較した。
論文 参考訳(メタデータ) (2023-12-07T23:27:55Z) - Fuzzing with Quantitative and Adaptive Hot-Bytes Identification [6.442499249981947]
アメリカのファジィ・ロック(fuzzy lop)はファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)ツールだ。
以下の原則に基づいて設計したツールという手法を提案する。
実世界の10のプログラムとLAVA-Mデータセットによる評価結果から,ツールキーブが分岐カバレッジを持続的に増加させ,他のファザよりも多くのバグを発見できた。
論文 参考訳(メタデータ) (2023-07-05T13:41:35Z) - NAPG: Non-Autoregressive Program Generation for Hybrid Tabular-Textual
Question Answering [52.10214317661547]
現在の数値推論法はプログラムシーケンスを自己回帰的にデコードする。
プログラム生成の精度は、デコードステップがエラー伝搬によって展開されるにつれて急激に低下する。
本稿では,非自己回帰型プログラム生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-07T11:25:21Z) - A Universal Error Measure for Input Predictions Applied to Online Graph
Problems [57.58926849872494]
本稿では,入力予測における誤差の定量化のための新しい尺度を提案する。
この尺度は、予測されていない要求と予測されていない実際の要求によるエラーをキャプチャする。
論文 参考訳(メタデータ) (2022-05-25T15:24:03Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
テスト時ドメイン適応は、ソースデータを使用しずに、ソース事前訓練されたモデルをターゲットドメインに適応することを目的としている。
CoTTAは実装が容易で、市販の事前訓練モデルに簡単に組み込むことができる。
論文 参考訳(メタデータ) (2022-03-25T11:42:02Z) - Global Optimization of Objective Functions Represented by ReLU Networks [77.55969359556032]
ニューラルネットワークは複雑で非敵対的な関数を学ぶことができ、安全クリティカルな文脈でそれらの正しい振る舞いを保証することは困難である。
ネットワーク内の障害を見つけるための多くのアプローチ(例えば、敵の例)があるが、これらは障害の欠如を保証できない。
本稿では,最適化プロセスを検証手順に統合し,本手法よりも優れた性能を実現する手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T08:19:48Z) - MEUZZ: Smart Seed Scheduling for Hybrid Fuzzing [21.318110758739675]
機械学習によるハイブリッドfUZZシステム(MEUZZ)
MEUZZは、過去の種スケジューリング決定から学んだ知識に基づいて、どの新しい種がより良いファジィング収量をもたらすと期待されているかを決定する。
結果: MEUZZ は最先端のグレーボックスとハイブリッドファジィよりも優れていた。
論文 参考訳(メタデータ) (2020-02-20T05:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。