論文の概要: Proofread: Fixes All Errors with One Tap
- arxiv url: http://arxiv.org/abs/2406.04523v1
- Date: Thu, 6 Jun 2024 21:38:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 17:57:38.793202
- Title: Proofread: Fixes All Errors with One Tap
- Title(参考訳): Proofread: ワンタップですべてのエラーを修正する
- Authors: Renjie Liu, Yanxiang Zhang, Yun Zhu, Haicheng Sun, Yuanbo Zhang, Michael Xuelin Huang, Shanqing Cai, Lei Meng, Shumin Zhai,
- Abstract要約: 本稿では,サーバサイドのLarge Language Models (LLM) を利用した新しいGboard機能であるProofreadを紹介する。
本稿では,データ生成からメトリクス設計,モデルチューニング,デプロイメントに至るまで,完全なシステムについて述べる。
- 参考スコア(独自算出の注目度): 14.785502657069902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The impressive capabilities in Large Language Models (LLMs) provide a powerful approach to reimagine users' typing experience. This paper demonstrates Proofread, a novel Gboard feature powered by a server-side LLM in Gboard, enabling seamless sentence-level and paragraph-level corrections with a single tap. We describe the complete system in this paper, from data generation, metrics design to model tuning and deployment. To obtain models with sufficient quality, we implement a careful data synthetic pipeline tailored to online use cases, design multifaceted metrics, employ a two-stage tuning approach to acquire the dedicated LLM for the feature: the Supervised Fine Tuning (SFT) for foundational quality, followed by the Reinforcement Learning (RL) tuning approach for targeted refinement. Specifically, we find sequential tuning on Rewrite and proofread tasks yields the best quality in SFT stage, and propose global and direct rewards in the RL tuning stage to seek further improvement. Extensive experiments on a human-labeled golden set showed our tuned PaLM2-XS model achieved 85.56\% good ratio. We launched the feature to Pixel 8 devices by serving the model on TPU v5 in Google Cloud, with thousands of daily active users. Serving latency was significantly reduced by quantization, bucket inference, text segmentation, and speculative decoding. Our demo could be seen in \href{https://youtu.be/4ZdcuiwFU7I}{Youtube}.
- Abstract(参考訳): LLM(Large Language Models)の印象的な機能は、ユーザのタイピングエクスペリエンスを再定義するための強力なアプローチを提供する。
本稿では,Gboard のサーバサイド LLM を利用した新しい Gboard 機能である Proofread について述べる。
本稿では,データ生成からメトリクス設計,モデルチューニング,デプロイメントに至るまで,完全なシステムについて述べる。
十分な品質のモデルを得るために,オンラインのユースケースに合わせたデータ合成パイプラインを実装し,多面的メトリクスを設計し,2段階のチューニング手法を用いて,基礎的品質のためのSFT (Supervised Fine Tuning) と,目標とする改良のための強化学習 (Reinforcement Learning, RL) チューニングアプローチを採用した。
具体的には、書き直しタスクと校正タスクの逐次チューニングにより、SFT段階で最高の品質が得られ、さらに改善を求めるRLチューニング段階では、グローバルかつ直接的な報酬が提案される。
PLM2-XSモデルが85.56</%の良好な比を示した。
私たちはPixel 8デバイスに、Google CloudのTPU v5でモデルを提供し、毎日何千人ものアクティブユーザーを抱えることで、この機能をローンチしました。
実行レイテンシは、量子化、バケット推論、テキストセグメンテーション、投機的復号化によって大幅に削減された。
私たちのデモは \href{https://youtu.be/4ZdcuiwFU7I}{Youtube} で見ることができます。
関連論文リスト
- Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping [53.454408491386886]
自己アライメントのブートストラップは、シングルラウンドアプローチをはるかに上回る。
モデルが継続的に強化した複数ショット機能を活用してゼロまたはワンショットのパフォーマンスを向上するステップ・オン・フィート・チューニング(SOFT)を提案する。
簡単な学習法に基づいて、自己アライメントの性能をさらに向上させるSOFT+を提案する。
論文 参考訳(メタデータ) (2024-02-12T12:30:42Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
視覚言語による事前学習モデルでは、事前学習タスクと下流タスクのギャップを埋めるために、しばしば多くの学習可能なトークンを必要とする。
本稿では,効率的なVL転送学習を実現するために,APT(Approximated Prompt Tuning)アプローチを提案する。
論文 参考訳(メタデータ) (2023-06-27T05:43:47Z) - Enhancing Black-Box Few-Shot Text Classification with Prompt-Based Data
Augmentation [42.05617728412819]
大規模言語モデルの勾配にアクセスすることなく、少数ショットのテキスト分類を最適化する方法を示す。
我々のアプローチはBT-Classifierと呼ばれ、最先端のブラックボックス学習者よりもはるかに優れています。
論文 参考訳(メタデータ) (2023-05-23T07:54:34Z) - Ahead-of-Time P-Tuning [0.2538209532048867]
Ahead-of-Time (AoT) P-Tuningは、事前学習言語モデル(LM)のためのパラメータ効率の良い微調整法である
我々は,RoBERTaモデルとDeBERTaモデルを用いて,GLUEおよびSuperGLUEベンチマークデータセットのAoT P-Tuningを評価する。
提案手法は, 1 つのバックボーン LM を用いてマルチタスクの推論を可能にする。
論文 参考訳(メタデータ) (2023-05-18T09:24:53Z) - Decoder Tuning: Efficient Language Understanding as Decoding [84.68266271483022]
本稿では,タスク固有のデコーダネットワークを出力側で最適化するデコーダチューニング(DecT)を提案する。
勾配ベースの最適化により、DecTは数秒以内にトレーニングでき、サンプル毎に1つのPクエリしか必要としない。
我々は、広範囲にわたる自然言語理解実験を行い、DecTが200ドル以上のスピードアップで最先端のアルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-12-16T11:15:39Z) - Vision Transformer Slimming: Multi-Dimension Searching in Continuous
Optimization Space [35.04846842178276]
複数の次元にまたがってそのようなサブ構造を探索できる純粋視覚トランスフォーマースライミング(ViT-Slim)フレームワークを導入する。
本手法は,各次元の連続探索空間におけるグローバルな重要性を反映した,事前定義された因子による学習可能かつ統一されたl1空間制約に基づく。
我々のViT-Slimは、パラメータの最大40%と様々な視覚変換器上でのFLOPを圧縮でき、ImageNetの精度は0.6%向上する。
論文 参考訳(メタデータ) (2022-01-03T18:59:54Z) - LiST: Lite Self-training Makes Efficient Few-shot Learners [91.28065455714018]
LiSTは古典的な微調整法よりも35%改善し、プロンプトチューニングよりも6%改善した。
論文 参考訳(メタデータ) (2021-10-12T18:47:18Z) - The Power of Scale for Parameter-Efficient Prompt Tuning [4.481348281462904]
プロンプトチューニング」は、特定の下流タスクを実行するために、凍結した言語モデルに「ソフトプロンプト」を学習するための単純なメカニズムである。
我々のエンドツーエンドの学習アプローチは、GPT-3の「ファウショット」学習を大きなマージンで上回ります。
論文 参考訳(メタデータ) (2021-04-18T03:19:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。