MambaDepth: Enhancing Long-range Dependency for Self-Supervised Fine-Structured Monocular Depth Estimation
- URL: http://arxiv.org/abs/2406.04532v1
- Date: Thu, 6 Jun 2024 22:08:48 GMT
- Title: MambaDepth: Enhancing Long-range Dependency for Self-Supervised Fine-Structured Monocular Depth Estimation
- Authors: Ionuţ Grigore, Călin-Adrian Popa,
- Abstract summary: MambaDepth is a versatile network tailored for self-supervised depth estimation.
MambaDepth combines the U-Net's effectiveness in self-supervised depth estimation with the advanced capabilities of Mamba.
MambaDepth proves its superior generalization capacities on other datasets such as Make3D and Cityscapes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of self-supervised depth estimation, Convolutional Neural Networks (CNNs) and Transformers have traditionally been dominant. However, both architectures struggle with efficiently handling long-range dependencies due to their local focus or computational demands. To overcome this limitation, we present MambaDepth, a versatile network tailored for self-supervised depth estimation. Drawing inspiration from the strengths of the Mamba architecture, renowned for its adept handling of lengthy sequences and its ability to capture global context efficiently through a State Space Model (SSM), we introduce MambaDepth. This innovative architecture combines the U-Net's effectiveness in self-supervised depth estimation with the advanced capabilities of Mamba. MambaDepth is structured around a purely Mamba-based encoder-decoder framework, incorporating skip connections to maintain spatial information at various levels of the network. This configuration promotes an extensive feature learning process, enabling the capture of fine details and broader contexts within depth maps. Furthermore, we have developed a novel integration technique within the Mamba blocks to facilitate uninterrupted connectivity and information flow between the encoder and decoder components, thereby improving depth accuracy. Comprehensive testing across the established KITTI dataset demonstrates MambaDepth's superiority over leading CNN and Transformer-based models in self-supervised depth estimation task, allowing it to achieve state-of-the-art performance. Moreover, MambaDepth proves its superior generalization capacities on other datasets such as Make3D and Cityscapes. MambaDepth's performance heralds a new era in effective long-range dependency modeling for self-supervised depth estimation.
Related papers
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - Neural Architecture Search based Global-local Vision Mamba for Palm-Vein Recognition [42.4241558556591]
We propose a hybrid network structure named Global-local Vision Mamba (GLVM) to learn the local correlations in images explicitly and global dependencies among tokens for vein feature representation.
Thirdly, to learn the complementary features, we propose a ConvMamba block consisting of three branches, named Multi-head Mamba branch (MHMamba), Feature Iteration Unit branch (FIU), and Convolutional Neural Network (CNN) branch.
Finally, a Globallocal Alternate Neural Architecture Search (GLNAS) method is proposed to search the optimal architecture of GLVM alternately with the evolutionary algorithm.
arXiv Detail & Related papers (2024-08-11T10:42:22Z) - Mamba-Spike: Enhancing the Mamba Architecture with a Spiking Front-End for Efficient Temporal Data Processing [4.673285689826945]
Mamba-Spike is a novel neuromorphic architecture that integrates a spiking front-end with the Mamba backbone to achieve efficient temporal data processing.
The architecture consistently outperforms state-of-the-art baselines, achieving higher accuracy, lower latency, and improved energy efficiency.
arXiv Detail & Related papers (2024-08-04T14:10:33Z) - DiM-Gesture: Co-Speech Gesture Generation with Adaptive Layer Normalization Mamba-2 framework [2.187990941788468]
generative model crafted to create highly personalized 3D full-body gestures solely from raw speech audio.
Model integrates a Mamba-based fuzzy feature extractor with a non-autoregressive Adaptive Layer Normalization (AdaLN) Mamba-2 diffusion architecture.
arXiv Detail & Related papers (2024-08-01T08:22:47Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
We introduce DeciMamba, a context-extension method specifically designed for Mamba.
We show that DeciMamba can extrapolate context lengths 25x longer than the ones seen during training, and does so without utilizing additional computational resources.
arXiv Detail & Related papers (2024-06-20T17:40:18Z) - Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation [21.1787366866505]
We propose Mamba-UNet, a novel architecture that synergizes the U-Net in medical image segmentation with Mamba's capability.
Mamba-UNet adopts a pure Visual Mamba (VMamba)-based encoder-decoder structure, infused with skip connections to preserve spatial information across different scales of the network.
arXiv Detail & Related papers (2024-02-07T18:33:04Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - Global-Local Path Networks for Monocular Depth Estimation with Vertical
CutDepth [24.897377434844266]
We propose a novel structure and training strategy for monocular depth estimation.
We deploy a hierarchical transformer encoder to capture and convey the global context, and design a lightweight yet powerful decoder.
Our network achieves state-of-the-art performance over the challenging depth dataset NYU Depth V2.
arXiv Detail & Related papers (2022-01-19T06:37:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.