DiM-Gesture: Co-Speech Gesture Generation with Adaptive Layer Normalization Mamba-2 framework
- URL: http://arxiv.org/abs/2408.00370v1
- Date: Thu, 1 Aug 2024 08:22:47 GMT
- Title: DiM-Gesture: Co-Speech Gesture Generation with Adaptive Layer Normalization Mamba-2 framework
- Authors: Fan Zhang, Naye Ji, Fuxing Gao, Bozuo Zhao, Jingmei Wu, Yanbing Jiang, Hui Du, Zhenqing Ye, Jiayang Zhu, WeiFan Zhong, Leyao Yan, Xiaomeng Ma,
- Abstract summary: generative model crafted to create highly personalized 3D full-body gestures solely from raw speech audio.
Model integrates a Mamba-based fuzzy feature extractor with a non-autoregressive Adaptive Layer Normalization (AdaLN) Mamba-2 diffusion architecture.
- Score: 2.187990941788468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech-driven gesture generation is an emerging domain within virtual human creation, where current methods predominantly utilize Transformer-based architectures that necessitate extensive memory and are characterized by slow inference speeds. In response to these limitations, we propose \textit{DiM-Gestures}, a novel end-to-end generative model crafted to create highly personalized 3D full-body gestures solely from raw speech audio, employing Mamba-based architectures. This model integrates a Mamba-based fuzzy feature extractor with a non-autoregressive Adaptive Layer Normalization (AdaLN) Mamba-2 diffusion architecture. The extractor, leveraging a Mamba framework and a WavLM pre-trained model, autonomously derives implicit, continuous fuzzy features, which are then unified into a singular latent feature. This feature is processed by the AdaLN Mamba-2, which implements a uniform conditional mechanism across all tokens to robustly model the interplay between the fuzzy features and the resultant gesture sequence. This innovative approach guarantees high fidelity in gesture-speech synchronization while maintaining the naturalness of the gestures. Employing a diffusion model for training and inference, our framework has undergone extensive subjective and objective evaluations on the ZEGGS and BEAT datasets. These assessments substantiate our model's enhanced performance relative to contemporary state-of-the-art methods, demonstrating competitive outcomes with the DiTs architecture (Persona-Gestors) while optimizing memory usage and accelerating inference speed.
Related papers
- DiM-Gestor: Co-Speech Gesture Generation with Adaptive Layer Normalization Mamba-2 [6.6954598568836925]
DiM-Gestor is an end-to-end generative model leveraging the Mamba-2 architecture.
A fuzzy feature extractor and a speech-to-gesture mapping module are built on the Mamba-2.
Our approach delivers competitive results and significantly reduces memory usage, approximately 2.4 times, and enhances inference speeds by 2 to 4 times.
arXiv Detail & Related papers (2024-11-23T08:02:03Z) - Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - Speech-driven Personalized Gesture Synthetics: Harnessing Automatic Fuzzy Feature Inference [5.711221299998126]
Persona-Gestor is a novel end-to-end generative model designed to generate highly personalized 3D full-body gestures.
The model combines a fuzzy feature extractor and a non-autoregressive Adaptive Layer Normalization (AdaLN) transformer diffusion architecture.
Persona-Gestor improves the system's usability and generalization capabilities.
arXiv Detail & Related papers (2024-03-16T04:40:10Z) - Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
This paper introduces Orchid, a novel architecture designed to address the quadratic complexity of traditional attention mechanisms.
At the core of this architecture lies a new data-dependent global convolution layer, which contextually adapts its conditioned kernel on input sequence.
We evaluate the proposed model across multiple domains, including language modeling and image classification, to highlight its performance and generality.
arXiv Detail & Related papers (2024-02-28T17:36:45Z) - STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition [50.064502884594376]
We study the problem of human action recognition using motion capture (MoCap) sequences.
We propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences.
The proposed method achieves state-of-the-art performance compared to skeleton-based and point-cloud-based models.
arXiv Detail & Related papers (2023-03-31T16:19:27Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.