Rare Class Prediction Model for Smart Industry in Semiconductor Manufacturing
- URL: http://arxiv.org/abs/2406.04533v1
- Date: Thu, 6 Jun 2024 22:09:43 GMT
- Title: Rare Class Prediction Model for Smart Industry in Semiconductor Manufacturing
- Authors: Abdelrahman Farrag, Mohammed-Khalil Ghali, Yu Jin,
- Abstract summary: This study develops a rare class prediction approach for in situ data collected from a smart semiconductor manufacturing process.
The primary objective is to build a model that addresses issues of noise and class imbalance, enhancing class separation.
The model was evaluated using various performance metrics, with ROC curves showing an AUC of 0.95, a precision of 0.66, and a recall of 0.96
- Score: 1.3955252961896323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of industry has enabled the integration of physical and digital systems, facilitating the collection of extensive data on manufacturing processes. This integration provides a reliable solution for improving process quality and managing equipment health. However, data collected from real manufacturing processes often exhibit challenging properties, such as severe class imbalance, high rates of missing values, and noisy features, which hinder effective machine learning implementation. In this study, a rare class prediction approach is developed for in situ data collected from a smart semiconductor manufacturing process. The primary objective is to build a model that addresses issues of noise and class imbalance, enhancing class separation. The developed approach demonstrated promising results compared to existing literature, which would allow the prediction of new observations that could give insights into future maintenance plans and production quality. The model was evaluated using various performance metrics, with ROC curves showing an AUC of 0.95, a precision of 0.66, and a recall of 0.96
Related papers
- Hybrid Gaussian Process Regression with Temporal Feature Extraction for Partially Interpretable Remaining Useful Life Interval Prediction in Aeroengine Prognostics [0.615155791092452]
This paper introduces a modified Gaussian Process Regression (GPR) model for Remaining Useful Life (RUL) interval prediction.
The modified GPR predicts confidence intervals by learning from historical data and addresses uncertainty modeling in a more structured way.
It effectively captures intricate time-series patterns and dynamic behaviors inherent in modern manufacturing systems.
arXiv Detail & Related papers (2024-11-19T03:00:02Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - A Hybrid Approach of Transfer Learning and Physics-Informed Modeling:
Improving Dissolved Oxygen Concentration Prediction in an Industrial
Wastewater Treatment Plant [0.0]
The objective is to increase the prediction performance of an industrial wastewater treatment plant by transferring the knowledge of (i) an open-source simulation model that captures the underlying physics of the process, albeit with dissimilarities to the target plant, and (ii) another industrial plant characterized by noisy and limited data but located in the same refinery, and (iii) the model in (ii)
The results have shown that test and validation performance are improved up to 27% and 59%, respectively.
arXiv Detail & Related papers (2024-01-20T11:53:08Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Towards a Deep Learning-based Online Quality Prediction System for
Welding Processes [4.923235962860045]
The welding process is characterized by complex cause-effect relationships between material properties, process conditions and weld quality.
Deep learning offers the potential to identify the relationships in available process data and predict the weld quality from process observations.
We present a concept for a deep learning based predictive quality system in GMAW.
arXiv Detail & Related papers (2023-10-19T10:35:50Z) - Stochastic Deep Koopman Model for Quality Propagation Analysis in
Multistage Manufacturing Systems [1.178566843877027]
This study introduces a deep Koopman (SDK) framework to model the complex behavior of MMSs.
We present a novel application of Koopman operators to propagate critical quality information extracted by variational autoencoders.
arXiv Detail & Related papers (2023-09-18T22:53:17Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.