1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation
- URL: http://arxiv.org/abs/2406.04600v1
- Date: Fri, 7 Jun 2024 03:13:46 GMT
- Title: 1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation
- Authors: Deshui Miao, Xin Li, Zhenyu He, Yaowei Wang, Ming-Hsuan Yang,
- Abstract summary: We propose a semantic embedding video object segmentation model and use the salient features of objects as query representations.
We trained our model on a large-scale video object segmentation dataset.
Our model achieves first place (textbf84.45%) in the test set of Complex Video Object Challenge.
- Score: 72.54357831350762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tracking and segmenting multiple objects in complex scenes has always been a challenge in the field of video object segmentation, especially in scenarios where objects are occluded and split into parts. In such cases, the definition of objects becomes very ambiguous. The motivation behind the MOSE dataset is how to clearly recognize and distinguish objects in complex scenes. In this challenge, we propose a semantic embedding video object segmentation model and use the salient features of objects as query representations. The semantic understanding helps the model to recognize parts of the objects and the salient feature captures the more discriminative features of the objects. Trained on a large-scale video object segmentation dataset, our model achieves first place (\textbf{84.45\%}) in the test set of PVUW Challenge 2024: Complex Video Object Segmentation Track.
Related papers
- Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - MeViS: A Large-scale Benchmark for Video Segmentation with Motion
Expressions [93.35942025232943]
We propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments.
The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms.
arXiv Detail & Related papers (2023-08-16T17:58:34Z) - MOSE: A New Dataset for Video Object Segmentation in Complex Scenes [106.64327718262764]
Video object segmentation (VOS) aims at segmenting a particular object throughout the entire video clip sequence.
The state-of-the-art VOS methods have achieved excellent performance (e.g., 90+% J&F) on existing datasets.
We collect a new VOS dataset called coMplex video Object SEgmentation (MOSE) to study the tracking and segmenting objects in complex environments.
arXiv Detail & Related papers (2023-02-03T17:20:03Z) - Image Segmentation-based Unsupervised Multiple Objects Discovery [1.7674345486888503]
Unsupervised object discovery aims to localize objects in images.
We propose a fully unsupervised, bottom-up approach, for multiple objects discovery.
We provide state-of-the-art results for both unsupervised class-agnostic object detection and unsupervised image segmentation.
arXiv Detail & Related papers (2022-12-20T09:48:24Z) - Segmenting Moving Objects via an Object-Centric Layered Representation [100.26138772664811]
We introduce an object-centric segmentation model with a depth-ordered layer representation.
We introduce a scalable pipeline for generating synthetic training data with multiple objects.
We evaluate the model on standard video segmentation benchmarks.
arXiv Detail & Related papers (2022-07-05T17:59:43Z) - The Second Place Solution for The 4th Large-scale Video Object
Segmentation Challenge--Track 3: Referring Video Object Segmentation [18.630453674396534]
ReferFormer aims to segment object instances in a given video referred by a language expression in all video frames.
This work proposes several tricks to boost further, including cyclical learning rates, semi-supervised approach, and test-time augmentation inference.
The improved ReferFormer ranks 2nd place on CVPR2022 Referring Youtube-VOS Challenge.
arXiv Detail & Related papers (2022-06-24T02:15:06Z) - SOS! Self-supervised Learning Over Sets Of Handled Objects In Egocentric
Action Recognition [35.4163266882568]
We introduce Self-Supervised Learning Over Sets (SOS) to pre-train a generic Objects In Contact (OIC) representation model.
Our OIC significantly boosts the performance of multiple state-of-the-art video classification models.
arXiv Detail & Related papers (2022-04-10T23:27:19Z) - Discovering Objects that Can Move [55.743225595012966]
We study the problem of object discovery -- separating objects from the background without manual labels.
Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels into object-like regions.
We choose to focus on dynamic objects -- entities that can move independently in the world.
arXiv Detail & Related papers (2022-03-18T21:13:56Z) - Robust Instance Segmentation through Reasoning about Multi-Object
Occlusion [9.536947328412198]
We propose a deep network for multi-object instance segmentation that is robust to occlusion.
Our work builds on Compositional Networks, which learn a generative model of neural feature activations to locate occluders.
In particular, we obtain feed-forward predictions of the object classes and their instance and occluder segmentations.
arXiv Detail & Related papers (2020-12-03T17:41:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.