Multi-Granularity Video Object Segmentation
- URL: http://arxiv.org/abs/2412.01471v2
- Date: Tue, 03 Dec 2024 05:42:22 GMT
- Title: Multi-Granularity Video Object Segmentation
- Authors: Sangbeom Lim, Seongchan Kim, Seungjun An, Seokju Cho, Paul Hongsuck Seo, Seungryong Kim,
- Abstract summary: We propose a large-scale, densely annotated multi-granularity video object segmentation (MUG-VOS) dataset.
We automatically collected a training set that assists in tracking both salient and non-salient objects, and we also curated a human-annotated test set for reliable evaluation.
In addition, we present memory-based mask propagation model (MMPM), trained and evaluated on MUG-VOS dataset.
- Score: 36.06127939037613
- License:
- Abstract: Current benchmarks for video segmentation are limited to annotating only salient objects (i.e., foreground instances). Despite their impressive architectural designs, previous works trained on these benchmarks have struggled to adapt to real-world scenarios. Thus, developing a new video segmentation dataset aimed at tracking multi-granularity segmentation target in the video scene is necessary. In this work, we aim to generate multi-granularity video segmentation dataset that is annotated for both salient and non-salient masks. To achieve this, we propose a large-scale, densely annotated multi-granularity video object segmentation (MUG-VOS) dataset that includes various types and granularities of mask annotations. We automatically collected a training set that assists in tracking both salient and non-salient objects, and we also curated a human-annotated test set for reliable evaluation. In addition, we present memory-based mask propagation model (MMPM), trained and evaluated on MUG-VOS dataset, which leads to the best performance among the existing video object segmentation methods and Segment SAM-based video segmentation methods. Project page is available at https://cvlab-kaist.github.io/MUG-VOS.
Related papers
- ViCaS: A Dataset for Combining Holistic and Pixel-level Video Understanding using Captions with Grounded Segmentation [14.534308478766476]
This paper introduces ViCaS, a new dataset containing thousands of challenging videos.
Our benchmark evaluates models on holistic/high-level understanding and language-guided, pixel-precise segmentation.
arXiv Detail & Related papers (2024-12-12T23:10:54Z) - Training-Free Robust Interactive Video Object Segmentation [82.05906654403684]
We propose a training-free prompt tracking framework for interactive video object segmentation (I-PT)
We jointly adopt sparse points and boxes tracking, filtering out unstable points and capturing object-wise information.
Our framework has demonstrated robust zero-shot video segmentation results on popular VOS datasets.
arXiv Detail & Related papers (2024-06-08T14:25:57Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - MeViS: A Large-scale Benchmark for Video Segmentation with Motion
Expressions [93.35942025232943]
We propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments.
The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms.
arXiv Detail & Related papers (2023-08-16T17:58:34Z) - Segment Anything Meets Point Tracking [116.44931239508578]
This paper presents a novel method for point-centric interactive video segmentation, empowered by SAM and long-term point tracking.
We highlight the merits of point-based tracking through direct evaluation on the zero-shot open-world Unidentified Video Objects (UVO) benchmark.
Our experiments on popular video object segmentation and multi-object segmentation tracking benchmarks, including DAVIS, YouTube-VOS, and BDD100K, suggest that a point-based segmentation tracker yields better zero-shot performance and efficient interactions.
arXiv Detail & Related papers (2023-07-03T17:58:01Z) - BURST: A Benchmark for Unifying Object Recognition, Segmentation and
Tracking in Video [58.71785546245467]
Multiple existing benchmarks involve tracking and segmenting objects in video.
There is little interaction between them due to the use of disparate benchmark datasets and metrics.
We propose BURST, a dataset which contains thousands of diverse videos with high-quality object masks.
All tasks are evaluated using the same data and comparable metrics, which enables researchers to consider them in unison.
arXiv Detail & Related papers (2022-09-25T01:27:35Z) - Generating Masks from Boxes by Mining Spatio-Temporal Consistencies in
Videos [159.02703673838639]
We introduce a method for generating segmentation masks from per-frame bounding box annotations in videos.
We use our resulting accurate masks for weakly supervised training of video object segmentation (VOS) networks.
The additional data provides substantially better generalization performance leading to state-of-the-art results in both the VOS and more challenging tracking domain.
arXiv Detail & Related papers (2021-01-06T18:56:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.