Faithful and Accurate Self-Attention Attribution for Message Passing Neural Networks via the Computation Tree Viewpoint
- URL: http://arxiv.org/abs/2406.04612v2
- Date: Fri, 20 Dec 2024 11:17:45 GMT
- Title: Faithful and Accurate Self-Attention Attribution for Message Passing Neural Networks via the Computation Tree Viewpoint
- Authors: Yong-Min Shin, Siqing Li, Xin Cao, Won-Yong Shin,
- Abstract summary: We propose GATT, edge attribution calculation method for self-attention MPNNs based on the computation tree.
Despite its simplicity, we empirically demonstrate the effectiveness of GATT in three aspects of model explanation.
- Score: 11.459893079664578
- License:
- Abstract: The self-attention mechanism has been adopted in various popular message passing neural networks (MPNNs), enabling the model to adaptively control the amount of information that flows along the edges of the underlying graph. Such attention-based MPNNs (Att-GNNs) have also been used as a baseline for multiple studies on explainable AI (XAI) since attention has steadily been seen as natural model interpretations, while being a viewpoint that has already been popularized in other domains (e.g., natural language processing and computer vision). However, existing studies often use naive calculations to derive attribution scores from attention, undermining the potential of attention as interpretations for Att-GNNs. In our study, we aim to fill the gap between the widespread usage of Att-GNNs and their potential explainability via attention. To this end, we propose GATT, edge attribution calculation method for self-attention MPNNs based on the computation tree, a rooted tree that reflects the computation process of the underlying model. Despite its simplicity, we empirically demonstrate the effectiveness of GATT in three aspects of model explanation: faithfulness, explanation accuracy, and case studies by using both synthetic and real-world benchmark datasets. In all cases, the results demonstrate that GATT greatly improves edge attribution scores, especially compared to the previous naive approach. Our code is available at https://github.com/jordan7186/GAtt.
Related papers
- Towards Fair Graph Representation Learning in Social Networks [20.823461673845756]
We introduce constraints for fair representation learning based on three principles: sufficiency, independence, and separation.
We theoretically demonstrate that our EAGNN method can effectively achieve group fairness.
arXiv Detail & Related papers (2024-10-15T10:57:02Z) - PROXI: Challenging the GNNs for Link Prediction [3.8233569758620063]
We introduce PROXI, which leverages proximity information of node pairs in both graph and attribute spaces.
Standard machine learning (ML) models perform competitively, even outperforming cutting-edge GNN models.
We show that augmenting traditional GNNs with PROXI significantly boosts their link prediction performance.
arXiv Detail & Related papers (2024-10-02T17:57:38Z) - Kolmogorov-Arnold Graph Neural Networks [2.4005219869876453]
Graph neural networks (GNNs) excel in learning from network-like data but often lack interpretability.
We propose the Graph Kolmogorov-Arnold Network (GKAN) to enhance both accuracy and interpretability.
arXiv Detail & Related papers (2024-06-26T13:54:59Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Node Masking: Making Graph Neural Networks Generalize and Scale Better [71.51292866945471]
Graph Neural Networks (GNNs) have received a lot of interest in the recent times.
In this paper, we utilize some theoretical tools to better visualize the operations performed by state of the art spatial GNNs.
We introduce a simple concept, Node Masking, that allows them to generalize and scale better.
arXiv Detail & Related papers (2020-01-17T06:26:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.