LogiCode: an LLM-Driven Framework for Logical Anomaly Detection
- URL: http://arxiv.org/abs/2406.04687v1
- Date: Fri, 7 Jun 2024 07:01:06 GMT
- Title: LogiCode: an LLM-Driven Framework for Logical Anomaly Detection
- Authors: Yiheng Zhang, Yunkang Cao, Xiaohao Xu, Weiming Shen,
- Abstract summary: LogiCode is a novel framework that leverages Large Language Models (LLMs) for identifying logical anomalies in industrial settings.
By harnessing LLMs for logical reasoning, LogiCode autonomously generates Python codes to pinpoint anomalies such as incorrect quantities or missing elements.
- Score: 5.989778187635765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents LogiCode, a novel framework that leverages Large Language Models (LLMs) for identifying logical anomalies in industrial settings, moving beyond traditional focus on structural inconsistencies. By harnessing LLMs for logical reasoning, LogiCode autonomously generates Python codes to pinpoint anomalies such as incorrect component quantities or missing elements, marking a significant leap forward in anomaly detection technologies. A custom dataset "LOCO-Annotations" and a benchmark "LogiBench" are introduced to evaluate the LogiCode's performance across various metrics including binary classification accuracy, code generation success rate, and precision in reasoning. Findings demonstrate LogiCode's enhanced interpretability, significantly improving the accuracy of logical anomaly detection and offering detailed explanations for identified anomalies. This represents a notable shift towards more intelligent, LLM-driven approaches in industrial anomaly detection, promising substantial impacts on industry-specific applications.
Related papers
- LAD-Reasoner: Tiny Multimodal Models are Good Reasoners for Logical Anomaly Detection [27.45348890285863]
We introduce Reasoning Logical Anomaly Detection (RLAD), which extends traditional anomaly detection by incorporating logical reasoning.
We propose a new framework, LAD-Reasoner, a customized tiny multimodal language model built on Qwen2.5-VL 3B.
Experiments on the MVTec LOCO AD dataset show that LAD-Reasoner, though significantly smaller, matches the performance of Qwen2.5-VL-72B in accuracy and F1 score.
arXiv Detail & Related papers (2025-04-17T08:41:23Z) - On Explaining (Large) Language Models For Code Using Global Code-Based Explanations [45.126233498200534]
Language Models for Code (LLM4Code) have significantly changed the landscape of software engineering (SE)
We introduce code rationales (Code$Q$), a technique with rigorous mathematical underpinning, to identify subsets of tokens that can explain individual code predictions.
Our evaluation demonstrates that Code$Q$ is a powerful interpretability method to explain how (less) meaningful input concepts (i.e., natural language particle at') highly impact output generation.
arXiv Detail & Related papers (2025-03-21T01:00:45Z) - Correctness Assessment of Code Generated by Large Language Models Using Internal Representations [4.32362000083889]
We introduce OPENIA, a novel framework to assess the correctness of code generated by Large Language Models (LLMs)
Our empirical analysis reveals that these internal representations encode latent information, which strongly correlates with the correctness of the generated code.
OPENIA consistently outperforms baseline models, achieving higher accuracy, precision, recall, and F1-Scores with up to a 2X improvement in standalone code generation.
arXiv Detail & Related papers (2025-01-22T15:04:13Z) - Understanding Defects in Generated Codes by Language Models [0.669087470775851]
This study categorizes and analyzes 367 identified defects from code snippets generated by Large Language Models.
Error categories indicate key areas where LLMs frequently fail, underscoring the need for targeted improvements.
This paper implemented five prompt engineering techniques, including Scratchpad Prompting, Program of Thoughts Prompting, Chain-of-Thought Prompting, Chain-of-Thought Prompting, and Structured Chain-of-Thought Prompting.
arXiv Detail & Related papers (2024-08-23T21:10:09Z) - Harnessing the Power of LLMs in Source Code Vulnerability Detection [0.0]
Software vulnerabilities, caused by unintentional flaws in source code, are a primary root cause of cyberattacks.
We harness Large Language Models' capabilities to analyze source code and detect known vulnerabilities.
arXiv Detail & Related papers (2024-08-07T00:48:49Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - Between Lines of Code: Unraveling the Distinct Patterns of Machine and Human Programmers [14.018844722021896]
We study the specific patterns that characterize machine- and human-authored code.
We propose DetectCodeGPT, a novel method for detecting machine-generated code.
arXiv Detail & Related papers (2024-01-12T09:15:20Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
Large language models (LLMs)- based code generation is a complex and powerful black-box model.
We propose a novel causal graph-based representation of the prompt and the generated code.
We illustrate the insights that our framework can provide by studying over 3 popular LLMs with over 12 prompt adjustment strategies.
arXiv Detail & Related papers (2023-10-10T14:56:26Z) - Logic-induced Diagnostic Reasoning for Semi-supervised Semantic
Segmentation [85.12429517510311]
LogicDiag is a neural-logic semi-supervised learning framework for semantic segmentation.
Our key insight is that conflicts within pseudo labels, identified through symbolic knowledge, can serve as strong yet commonly ignored learning signals.
We showcase the practical application of LogicDiag in the data-hungry segmentation scenario, where we formalize the structured abstraction of semantic concepts as a set of logic rules.
arXiv Detail & Related papers (2023-08-24T06:50:07Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.