Harnessing the Power of LLMs in Source Code Vulnerability Detection
- URL: http://arxiv.org/abs/2408.03489v1
- Date: Wed, 7 Aug 2024 00:48:49 GMT
- Title: Harnessing the Power of LLMs in Source Code Vulnerability Detection
- Authors: Andrew A Mahyari,
- Abstract summary: Software vulnerabilities, caused by unintentional flaws in source code, are a primary root cause of cyberattacks.
We harness Large Language Models' capabilities to analyze source code and detect known vulnerabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software vulnerabilities, caused by unintentional flaws in source code, are a primary root cause of cyberattacks. Static analysis of source code has been widely used to detect these unintentional defects introduced by software developers. Large Language Models (LLMs) have demonstrated human-like conversational abilities due to their capacity to capture complex patterns in sequential data, such as natural languages. In this paper, we harness LLMs' capabilities to analyze source code and detect known vulnerabilities. To ensure the proposed vulnerability detection method is universal across multiple programming languages, we convert source code to LLVM IR and train LLMs on these intermediate representations. We conduct extensive experiments on various LLM architectures and compare their accuracy. Our comprehensive experiments on real-world and synthetic codes from NVD and SARD demonstrate high accuracy in identifying source code vulnerabilities.
Related papers
- Large Language Models and Code Security: A Systematic Literature Review [0.0]
Large Language Models (LLMs) have emerged as powerful tools for automating various programming tasks.
LLMs could introduce vulnerabilities unbeknown to the programmer.
When analyzing code, they could miss clear vulnerabilities or signal nonexistent ones.
arXiv Detail & Related papers (2024-12-19T16:20:22Z) - What You See Is Not Always What You Get: An Empirical Study of Code Comprehension by Large Language Models [0.5735035463793009]
We investigate the vulnerability of large language models (LLMs) to imperceptible attacks, where hidden character manipulation in source code misleads LLMs' behaviour while remaining undetectable to human reviewers.
These attacks include coding reordering, invisible coding characters, code deletions, and code homoglyphs.
Our findings confirm the susceptibility of LLMs to imperceptible coding character attacks, while different LLMs present different negative correlations between perturbation magnitude and performance.
arXiv Detail & Related papers (2024-12-11T04:52:41Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Towards Explainable Vulnerability Detection with Large Language Models [17.96542494363619]
Software vulnerabilities pose significant risks to the security and integrity of software systems.
The advent of large language models (LLMs) has introduced transformative potential due to their advanced generative capabilities.
In this paper, we propose LLMVulExp, an automated framework designed to specialize LLMs for the dual tasks of vulnerability detection and explanation.
arXiv Detail & Related papers (2024-06-14T04:01:25Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
Large Language Models (LLMs) have strong capabilities in code comprehension, but fine-tuning costs and semantic alignment issues limit their project-specific optimization.
Code models such CodeBERT are easy to fine-tune, but it is often difficult to learn vulnerability semantics from complex code languages.
This paper introduces the Multi-Model Collaborative Vulnerability Detection approach (M2CVD) to improve the detection accuracy of code models.
arXiv Detail & Related papers (2024-06-10T00:05:49Z) - Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive Benchmarking Study [1.03590082373586]
We propose using large language models (LLMs) to assist in finding vulnerabilities in source code.
The aim is to test multiple state-of-the-art LLMs and identify the best prompting strategies.
We find that LLMs can pinpoint many more issues than traditional static analysis tools, outperforming traditional tools in terms of recall and F1 scores.
arXiv Detail & Related papers (2024-05-24T14:59:19Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs.
Our studies reveal a new and universal safety vulnerability of these models against code input.
We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization.
arXiv Detail & Related papers (2024-03-12T17:55:38Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
Large language models (LLMs) are remarkably close to high-quality human-authored text.
Existing detection tools can only differentiate between machine-generated and human-authored text.
We propose LLMDet, a model-specific, secure, efficient, and extendable detection tool.
arXiv Detail & Related papers (2023-05-24T10:45:16Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - A Hierarchical Deep Neural Network for Detecting Lines of Codes with
Vulnerabilities [6.09170287691728]
Software vulnerabilities, caused by unintentional flaws in source codes, are the main root cause of cyberattacks.
We propose a deep learning approach to detect vulnerabilities from their LLVM IR representations based on the techniques that have been used in natural language processing.
arXiv Detail & Related papers (2022-11-15T21:21:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.