MGIMM: Multi-Granularity Instruction Multimodal Model for Attribute-Guided Remote Sensing Image Detailed Description
- URL: http://arxiv.org/abs/2406.04716v1
- Date: Fri, 7 Jun 2024 07:53:14 GMT
- Title: MGIMM: Multi-Granularity Instruction Multimodal Model for Attribute-Guided Remote Sensing Image Detailed Description
- Authors: Cong Yang, Zuchao Li, Lefei Zhang,
- Abstract summary: This paper proposes an attribute-guided textbfMulti-Granularity Instruction Multimodal Model (MGIMM) for remote sensing image detailed description.
MGIMM guides the multimodal model to learn the consistency between visual regions and corresponding text attributes.
We construct a dataset featuring 38,320 region-attribute pairs and 23,463 image-detailed description pairs.
- Score: 44.033701878979805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, large multimodal models have built a bridge from visual to textual information, but they tend to underperform in remote sensing scenarios. This underperformance is due to the complex distribution of objects and the significant scale differences among targets in remote sensing images, leading to visual ambiguities and insufficient descriptions by these multimodal models. Moreover, the lack of multimodal fine-tuning data specific to the remote sensing field makes it challenging for the model's behavior to align with user queries. To address these issues, this paper proposes an attribute-guided \textbf{Multi-Granularity Instruction Multimodal Model (MGIMM)} for remote sensing image detailed description. MGIMM guides the multimodal model to learn the consistency between visual regions and corresponding text attributes (such as object names, colors, and shapes) through region-level instruction tuning. Then, with the multimodal model aligned on region-attribute, guided by multi-grain visual features, MGIMM fully perceives both region-level and global image information, utilizing large language models for comprehensive descriptions of remote sensing images. Due to the lack of a standard benchmark for generating detailed descriptions of remote sensing images, we construct a dataset featuring 38,320 region-attribute pairs and 23,463 image-detailed description pairs. Compared with various advanced methods on this dataset, the results demonstrate the effectiveness of MGIMM's region-attribute guided learning approach. Code can be available at https://github.com/yangcong356/MGIMM.git
Related papers
- MMM-RS: A Multi-modal, Multi-GSD, Multi-scene Remote Sensing Dataset and Benchmark for Text-to-Image Generation [25.252173311925027]
We propose a Multi-modal, Multi-GSD, Multi-scene Remote Sensing (MMM-RS) dataset and benchmark for text-to-image generation in diverse remote sensing scenarios.
We utilize a large-scale pretrained vision-language model to automatically output text prompts and perform hand-crafted rectification, resulting in information-rich text-image pairs.
With extensive manual screening and refining annotations, we ultimately obtain a MMM-RS dataset that comprises approximately 2.1 million text-image pairs.
arXiv Detail & Related papers (2024-10-26T11:19:07Z) - ARMADA: Attribute-Based Multimodal Data Augmentation [93.05614922383822]
Attribute-based Multimodal Data Augmentation (ARMADA) is a novel multimodal data augmentation method via knowledge-guided manipulation of visual attributes.
ARMADA is a novel multimodal data generation framework that: (i) extracts knowledge-grounded attributes from symbolic KBs for semantically consistent yet distinctive image-text pair generation.
This also highlights the need to leverage external knowledge proxies for enhanced interpretability and real-world grounding.
arXiv Detail & Related papers (2024-08-19T15:27:25Z) - Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models [32.57246173437492]
This study introduces a novel dataset named Img-Diff, designed to enhance fine-grained image recognition in MLLMs.
By analyzing object differences between similar images, we challenge models to identify both matching and distinct components.
We utilize the Stable-Diffusion-XL model and advanced image editing techniques to create pairs of similar images that highlight object replacements.
arXiv Detail & Related papers (2024-08-08T17:10:16Z) - Matryoshka Multimodal Models [92.41824727506751]
We propose M3: Matryoshka Multimodal Models, which learns to represent visual content as nested sets of visual tokens.
We find that COCO-style benchmarks only need around 9 visual tokens to obtain accuracy similar to that of using all 576 tokens.
arXiv Detail & Related papers (2024-05-27T17:59:56Z) - MM-Interleaved: Interleaved Image-Text Generative Modeling via Multi-modal Feature Synchronizer [106.79844459065828]
This paper presents MM-Interleaved, an end-to-end generative model for interleaved image-text data.
It introduces a multi-scale and multi-image feature synchronizer module, allowing direct access to fine-grained image features in the previous context.
Experiments demonstrate the versatility of MM-Interleaved in recognizing visual details following multi-modal instructions and generating consistent images following both textual and visual conditions.
arXiv Detail & Related papers (2024-01-18T18:50:16Z) - GroundingGPT:Language Enhanced Multi-modal Grounding Model [15.44099961048236]
We propose GroundingGPT, a language enhanced multi-modal grounding model.
Our proposed model excels at tasks demanding a detailed understanding of local information within the input.
It demonstrates precise identification and localization of specific regions in images or moments in videos.
arXiv Detail & Related papers (2024-01-11T17:41:57Z) - CoCoT: Contrastive Chain-of-Thought Prompting for Large Multimodal
Models with Multiple Image Inputs [48.269363759989915]
The research focuses on two aspects: first, image-to-image matching, and second, multi-image-to-text matching.
We conduct evaluations on a range of both open-source and closed-source large models, including GPT-4V, Gemini, OpenFlamingo, and MMICL.
arXiv Detail & Related papers (2024-01-05T00:26:07Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
We propose a MultiModality PAnoramic multi-object Tracking framework (MMPAT)
It takes both 2D panorama images and 3D point clouds as input and then infers target trajectories using the multimodality data.
We evaluate the proposed method on the JRDB dataset, where the MMPAT achieves the top performance in both the detection and tracking tasks.
arXiv Detail & Related papers (2021-05-31T03:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.