Memory-enriched computation and learning in spiking neural networks
through Hebbian plasticity
- URL: http://arxiv.org/abs/2205.11276v1
- Date: Mon, 23 May 2022 12:48:37 GMT
- Title: Memory-enriched computation and learning in spiking neural networks
through Hebbian plasticity
- Authors: Thomas Limbacher, Ozan \"Ozdenizci, Robert Legenstein
- Abstract summary: Hebbian plasticity is believed to play a pivotal role in biological memory.
We introduce a novel spiking neural network architecture that is enriched by Hebbian synaptic plasticity.
We show that Hebbian enrichment renders spiking neural networks surprisingly versatile in terms of their computational as well as learning capabilities.
- Score: 9.453554184019108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Memory is a key component of biological neural systems that enables the
retention of information over a huge range of temporal scales, ranging from
hundreds of milliseconds up to years. While Hebbian plasticity is believed to
play a pivotal role in biological memory, it has so far been analyzed mostly in
the context of pattern completion and unsupervised learning. Here, we propose
that Hebbian plasticity is fundamental for computations in biological neural
systems. We introduce a novel spiking neural network architecture that is
enriched by Hebbian synaptic plasticity. We show that Hebbian enrichment
renders spiking neural networks surprisingly versatile in terms of their
computational as well as learning capabilities. It improves their abilities for
out-of-distribution generalization, one-shot learning, cross-modal generative
association, language processing, and reward-based learning. As spiking neural
networks are the basis for energy-efficient neuromorphic hardware, this also
suggests that powerful cognitive neuromorphic systems can be build based on
this principle.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks [0.0]
Spiking neural network is one of the cores of artificial intelligence which realizes brain-like computing.
This paper summarizes the strengths, weaknesses and applicability of five neuronal models and analyzes the characteristics of five network topologies.
arXiv Detail & Related papers (2023-09-08T16:41:08Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Sequence learning in a spiking neuronal network with memristive synapses [0.0]
A core concept that lies at the heart of brain computation is sequence learning and prediction.
Neuromorphic hardware emulates the way the brain processes information and maps neurons and synapses directly into a physical substrate.
We study the feasibility of using ReRAM devices as a replacement of the biological synapses in the sequence learning model.
arXiv Detail & Related papers (2022-11-29T21:07:23Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
How neural networks in the human brain represent commonsense knowledge is an important research topic in neuroscience, cognitive science, psychology, and artificial intelligence.
This work investigates how population encoding and spiking timing-dependent plasticity (STDP) mechanisms can be integrated into the learning of spiking neural networks.
The neuron populations of different communities together constitute the entire commonsense knowledge graph, forming a giant graph spiking neural network.
arXiv Detail & Related papers (2022-07-11T05:22:38Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.