CHSH Bell Tests For Optical Hybrid Entanglement
- URL: http://arxiv.org/abs/2406.04736v1
- Date: Fri, 7 Jun 2024 08:36:17 GMT
- Title: CHSH Bell Tests For Optical Hybrid Entanglement
- Authors: Morteza Moradi, Juan Camilo López Carreño, Adam Buraczewski, Thomas McDermott, Beate Elisabeth Asenbeck, Julien Laurat, Magdalena Stobińska,
- Abstract summary: hybrid entanglement can be created between two qubits, one encoded in a single photon and another one in coherent states with opposite phases.
It opens the path to a variety of quantum technologies, such as heterogeneous quantum networks, merging continuous and discrete variable encoding, and enabling the transport and interconversion of information.
Here, we perform a thorough study of Clauser-Horne-Shimony-Holt (CHSH) Bell inequality tests, enabling practical verification of quantum correlations for optical hybrid entanglement.
- Score: 1.3401966602181168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical hybrid entanglement can be created between two qubits, one encoded in a single photon and another one in coherent states with opposite phases. It opens the path to a variety of quantum technologies, such as heterogeneous quantum networks, merging continuous and discrete variable encoding, and enabling the transport and interconversion of information. However, reliable characterization of the nature of this entanglement is limited so far to full quantum state tomography. Here, we perform a thorough study of Clauser-Horne-Shimony-Holt (CHSH) Bell inequality tests, enabling practical verification of quantum correlations for optical hybrid entanglement. We show that a practical violation of this inequality is possible with simple photon number on/off measurements if detection efficiencies stay above 82%. Another approach, based on photon-number parity measurements, requires 94% efficiency but works well in the limit of higher photon populations. Both tests use no postselection of the measurement outcomes and they are free of the fair-sampling hypothesis. Our proposal paves the way to performing loophole-free tests using feasible experimental tasks such as coherent state interference and photon counting, and to verification of hybrid entanglement in real-world applications.
Related papers
- A Hybrid Approach to Mitigate Errors in Linear Photonic Bell-State Measurement for Quantum Interconnects [0.0]
We introduce a novel hybrid detection scheme for Bell-state measurement.
We derive explicit fidelities for quantum teleportation and entanglement swapping processes.
This work provides a new tool for linear optics schemes, with applications to quantum state engineering and quantum interconnects.
arXiv Detail & Related papers (2024-06-14T18:00:00Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Orbital angular momentum based intra- and inter- particle entangled
states generated via a quantum dot source [0.0]
This work employs a bright QD single-photon source to generate a complete set of quantum states for information processing with OAM photons.
We first study the hybrid intra-particle entanglement between the OAM and the polarization degree of freedom of a single-photon.
Then, we investigate the hybrid inter-particle entanglement, by exploiting a probabilistic two qudit OAM-based entangling gate.
arXiv Detail & Related papers (2022-11-09T19:20:49Z) - Two-Photon Interference of Single Photons from Dissimilar Sources [0.0]
Entanglement swapping and heralding are at the heart of many protocols for distributed quantum information.
We develop a theoretical description of pulsed two-photon interference of photons from dissimilar sources.
We study their dependence on critical system parameters such as quantum state lifetime and frequency detuning.
arXiv Detail & Related papers (2022-02-10T07:51:27Z) - Assessing the quality of near-term photonic quantum devices [0.0]
We present a method to certify that noise levels are low enough to allow potentially useful applications to be carried out.
We propose a series of benchmark tests targetting two main sources of noise, namely photon loss and distinguishability.
Our method results in a single-number metric, the Photonic Quality Factor, defined as the largest number of input photons for which the output statistics pass all tests.
arXiv Detail & Related papers (2022-02-09T21:32:27Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum teleportation with hybrid entangled resources prepared from
heralded quantum states [68.8204255655161]
We propose the generation of a hybrid entangled resource (HER)
The work includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated.
No spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
arXiv Detail & Related papers (2020-02-07T21:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.