Two-Photon Interference of Single Photons from Dissimilar Sources
- URL: http://arxiv.org/abs/2202.04884v1
- Date: Thu, 10 Feb 2022 07:51:27 GMT
- Title: Two-Photon Interference of Single Photons from Dissimilar Sources
- Authors: Christian Dangel, Jonas Schmitt, Anthony J. Bennett, Kai M\"uller,
Jonathan J. Finley
- Abstract summary: Entanglement swapping and heralding are at the heart of many protocols for distributed quantum information.
We develop a theoretical description of pulsed two-photon interference of photons from dissimilar sources.
We study their dependence on critical system parameters such as quantum state lifetime and frequency detuning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement swapping and heralding are at the heart of many protocols for
distributed quantum information. For photons, this typically involves Bell
state measurements based on two-photon interference effects. In this context,
hybrid systems that combine high rate, ultra-stable and pure quantum sources
with long-lived quantum memories are particularly interesting. Here, we develop
a theoretical description of pulsed two-photon interference of photons from
dissimilar sources to predict the outcomes of second-order cross-correlation
measurements. These are directly related to, and hence used to quantify, photon
indistinguishability. We study their dependence on critical system parameters
such as quantum state lifetime and frequency detuning, and quantify the impact
of emission time jitter, pure dephasing and spectral wandering. Our results
show that for fixed lifetime of emitter one, for each frequency detuning there
is an optimal lifetime of emitter two that leads to highest photon
indistinguishability. Expectations for different hybrid combinations involving
III-V quantum dots, color centers in diamond, 2D materials and atoms are
quantitatively compared for real-world system parameters. Our work both
provides a theoretical basis for the treatment of dissimilar emitters and
enables assessment of which imperfections can be tolerated in hybrid photonic
quantum networks.
Related papers
- Two photons everywhere [0.0]
We show that the basic concepts of interferences and correlations provide at the two-photon level an independent and drastically different picture than at the one-photon level.
arXiv Detail & Related papers (2024-02-21T18:50:50Z) - Quantum interferences and gates with emitter-based coherent photon sources [0.0]
In 2019, it was shown that the emitted single photon states often include coherence with the vacuum component.
We show how such photon-number coherence alters quantum interference experiments.
We illustrate the impact on quantum protocols by evidencing modifications in heralding efficiency and fidelity of two-qubit gates.
arXiv Detail & Related papers (2024-01-02T12:29:49Z) - Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Singular Spectrum Analysis of Two Photon Interference from Distinct
Quantum Emitters [0.0]
Time trace of quantum interference pattern of two photons from two independent solid-state emitters is preprocessed by means of singular spectral analysis.
This approach allows to single out the relevant oscillations from both the envelope and the noise, without resorting to fitting.
arXiv Detail & Related papers (2022-12-01T22:04:05Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - A multipair-free source of entangled photons in the solid state [0.0]
Multiphoton emission commonly reduces the degree of entanglement of photons generated by non-classical light sources.
Quantum emitters have the potential to overcome this hurdle but, so far, the effect of multiphoton emission on the quality of entanglement has never been addressed in detail.
arXiv Detail & Related papers (2022-03-31T14:50:16Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.